opendatascience | Technologies

Telegram-канал opendatascience - Data Science by ODS.ai 🦜

46226

First Telegram Data Science channel. Covering all technical and popular staff about anything related to Data Science: AI, Big Data, Machine Learning, Statistics, general Math and the applications of former. To reach editors contact: @malev

Subscribe to a channel

Data Science by ODS.ai 🦜

🪰 Китайские инженеры показали дрон размером с комара, созданный для задач слежки.

И это уже не фантастика - это реальность.

Что известно:
→ длина всего 0.6 см, вес около 0.3 г
→ крылья машут 500 раз в секунду
→ может записывать видео и звук
→ передаёт данные в реальном времени
→ практически незаметен и крайне сложен для обнаружения

Фактически это сочетание:
биомимикрии + микроинженерии + точности ИИ,
которое полностью меняет смысл понятия “наблюдение”.

Как технологический прорыв - это выглядит невероятно.
Но как концепция - тревожно.

Когда “камеры” можно прятать в насекомых…
сможет ли вообще существовать приватность?

Читать полностью…

Data Science by ODS.ai 🦜

Всплыла довольно скандальная история про Nvidia и пиратство книг для обучения ИИ

Для начала контекст. В начале 2024 года группа авторов подала иск против Nvidia. Они утверждали, что компания использует для обучения моделей Books3 – пиратский датасет с сотнями книг. NVIDIA, к слову, тогда заявила, что это попадает под «добросовестное использование» 😏

С тех пор судебный процесс продолжается, и теперь, в рамках расширенного иска, в деле внезапно появилась переписка между сотрудником NVIDIA и Anna’s Archive (это пиратская теневая библиотека, в которой собраны в том числе защищенные книги и статьи).

Что было в переписке:

– Сотрудник из команды по стратегии данных NVIDIA обратился к Anna’s Archive и спросил «что библиотека может предложить, и как получить быстрый доступ к корпусу книг».

– После этого, что самое смешное, Anna’s Archive сами предупредили NVIDIA, что данные являются незаконно полученными и (внимание) попросили подтвердить, действительно ли у сотрудника есть внутреннее разрешение на работу с таким материалом.

– Через неделю руководство NVIDIA дало зеленый свет, оправдавшись давлением конкуренции. После этого Anna’s Archive предоставили доступ.

Точные объемы данных (как и то, сколько Nvidia за них заплатили) неизвестны. Пишут, что их было около 500 терабайт – а это миллионы книг.

На этом, кстати, веселье не кончается: авторы утверждают, что Nvidia, скорее всего, использовала также другие аналогичные библиотеки типа LibGen, Sci-Hub, Z-Library и даже распространяла скрипты, якобы позволяющие корпоративным клиентам автоматически скачивать такие датасеты (но это еще предстоит доказать).

Читать полностью…

Data Science by ODS.ai 🦜

Современная разработка 2026. Ничего не перепутал?

Читать полностью…

Data Science by ODS.ai 🦜

многие уже слышали про Zhipu AI (智谱 - с китайского можно перевести как "композиция мудрости"), это еще один китайский ИИ-стартап, который выпускает свои базовые модели; в частности на прошлой неделе они выпустили модель GLM-Image для генерации картинок (примеры работы на первых двух картинках)

на третьей картинке изображен пайплайн работы их модели - сначала они авторегрессионно генерируют изображение более низкого качества, а потом улучшают его с помощью диффузии; интересно, что они используют отдельные токены для того, чтобы закодировать текст, который должен быть на изображении (4 картинка)

но привлекла мое внимание не сама модель, а тот факт, что эта модель - первая модель для генерации изображений, обученная на Huawei Ascend; DeepSeek в свое время заявлял сначала инференс на них, а потом и обучение - хотя были сомнения; а теперь - еще одна независимая компания

в общем, Huawei можно поздравить с достижением статуса "китайской Nvidia", а нас всех - с развитием рынка генеративных моделей

@valuableai

Читать полностью…

Data Science by ODS.ai 🦜

🌟 NVIDIA KVzap: жмем KV-кэш в 4 раза.

Все любят длинный контекст, но для GPU это больно - KV-кэш растет линейно и быстро сжирает VRAM. Например, для Llama-65B на 128k токенов кэш весит 335 ГБ. Существующие методы прунинга либо медленные, либо тупые и режут важное, либо требуют переобучения модели.

NVIDIA предложили метод KVzap, который решает, какие токены можно забыть, глядя только на текущие хидден-стэйты.

🟡Логика метода разбита на 2 этапа:

Поиск идеала (KVzip+).
Берется медленный, но точный метод KVzip: модели скармливают текст, заставляют его повторить, и смотрят, на какие прошлые токены она реально обращает внимание. Это золотой стандарт важности токена. Но в проде так делать нельзя, это двойная работа.

Аппроксимация (KVzap).
Тут и происходит вся суть: крошечная модель-суррогат смотрит на входящий хидден-стэйт токена и предсказывает, насколько этот токен будет важен в будущем, то есть пытается угадать скор KVzip.

Модели 2-х видов:

KVzap-Linear: простейшая линейная проекция (одна матрица). Она берет хиден-стэйт и тупо проецирует его в скалярный скор важности. Сложность: экстремально низкая (~0.02%).

KVzap-MLP: двухслойный перцептрон. Внутри есть скрытый слой размером 1/8 от размерности модели и нелинейная активация. Сложность: низкая, но выше линейной (~1.1%).


🟡Все вместе это работает так

Токен залетает в слой трансформера, модель-суррогат быстро считает его скор важности. Если он ниже порога - токен в кэш не пишется или удаляется. Но при этом всегда оставляется скользящее окно из последних 128 токенов, чтобы не терять локальный контекст, иначе модель сыпется.

🟡Результаты тестов.

Проверяли на Qwen3-8B, Llama-3.1-8B и Qwen3-32B. Спойлер: работает везде.

Удалось выкинуть до 75% KV-кэша, а это сжатие в 4 раза. На бенчмарках RULER (длинный контекст), LongBench и AIME25 падение метрик или нулевое, или меньше 1%. Оверхед от суррогатной модели мизерный - менее 1% FLOPs.

🟡Звучит, конечно, как гем, но давайте про минусы:

🟠Нужно дообучить этот маленький MLP для каждого слоя целевой модели. Датасет нужен, но процесс быстрый.

🟠Удаление токенов создает рваный кэш. У разных голов будет разное количество сохраненных токенов.

Это плохо, потому что стандартные ядра Paged Attention любят структуру. Чтобы реально получить ускорение, а не только экономию памяти, нужно писать кастомные CUDA-ядра, которые смогут эффективно жевать блоки переменной длины.


🟠Порог отсечения фиксированный. Если промахнуться с ним, то модель начнет галлюцинировать или забудет начало.

🟡По итогу, KVzap - крутой шаг к тому, чтобы гонять длинные контексты на GPU попроще.

Метод умнее, чем Streaming LLM, и быстрее, чем полные методы разреженного внимания.

Ждем интеграции в vLLM или TRT-LLM, а пока, чтобы скрасить ожидание, NVIDIA собрала на HF интерактивный лидерборд популярных методик компрессии KV-кэша.

Код и веса моделей-суррогатов из тестов пейпера в открытом доступе, так что нет никаких ограничений, чтобы не покрутить KVzap на каком-нибудь тестовом сетапе.



@ai_machinelearning_big_data

#AI #ML #LLM #KVZAP #NVIDIA

Читать полностью…

Data Science by ODS.ai 🦜

🤖 Лучшие GitHub-репозитории, чтобы выучить AI с нуля в 2026

Если хочешь разобраться в ИИ не по курсам “в вакууме”, а через реальные open-source проекты - вот топ реп, которые реально ведут от базы до практики:

1) Karpathy – Neural Networks: Zero to Hero
Самый понятный вход в нейросети и backprop “на пальцах”
https://github.com/karpathy/nn-zero-to-hero

2) Hugging Face Transformers
Главная библиотека современного NLP/LLM: модели, токенизаторы, fine-tuning
https://github.com/huggingface/transformers

3) FastAI – Fastbook
Практическое DL-обучение через проекты и эксперименты
https://github.com/fastai/fastbook

4) Made With ML
ML как инженерная система: пайплайны, прод, деплой, мониторинг
https://github.com/GokuMohandas/Made-With-ML

5) Machine Learning System Design (Chip Huyen)
Как строить ML-системы в реальном бизнесе: данные, метрики, инфраструктура
https://github.com/chiphuyen/machine-learning-systems-design

6) Awesome Generative AI Guide
Подборка материалов по GenAI: от основ до практики
https://github.com/aishwaryanr/awesome-generative-ai-guide

7) Dive into Deep Learning (D2L)
Одна из лучших книг по DL + код + задания
https://github.com/d2l-ai/d2l-en

Сохрани себе - это база, на которой можно реально вырасти до ML/LLM-инженера.

@DevOPSitsec

Читать полностью…

Data Science by ODS.ai 🦜

Stereo Data Ёлка | 24 января 2026🎄🦜

Год в мире данных завершается — время свести все каналы воедино! 🔥

На мероприятии вас ждёт:
🔹 Микс главных итогов 2025 в ML/DS
🔹Разбор лучших решений VK RecSys Challenge (эксклюзив для офлайна).
🔹 Атмосфера живого общения, афтепати и подарки за активность.

📌 Формат — гибридный, но полное погружение в «стерео-звук» данных — только офлайн:
📱 В Москве — в гостях у ВК
📱 В Питере — в гостях у ВК

Регистрируйтесь до 20 января на страницах мероприятий, места на площадках ограничены!

TL;DR:
🎄Data Ёлка ждёт всех в субботу 24 января
🎁 Пройдут 2 офлайн Ëлки + одна общая онлайн-трансляция на VK Video ODS.

Читать полностью…

Data Science by ODS.ai 🦜

В МГУ им. М.В. Ломоносова предложили новый подход к формальной верификации моделей

Он проверяет надежность и устойчивость ИИ-моделей при выполнении критически важных задач. Исследователи отмечают, что традиционное тестирование на наборах данных позволяет оценивать только точность, но не дает гарантий, что всегда будут соблюдаться заданные свойства.

Подход протестировали на модели, применяемой в задаче активного шумоподавления. Для этого исследователи разработали набор инструментов: преобразование весов из формата ONNX в систему ограничений и проверка их выполнимости с помощью Prolog-верификатора.

Метод сравнили с системой Marabou — одним из наиболее известных инструментов для проверки нейросетей. Новый подход обеспечил высокую скорость и требовал меньше памяти при анализе больших моделей и свойств.

🔗Источник: пресс-служба МГУ им. М.В. Ломоносова

Читать полностью…

Data Science by ODS.ai 🦜

Привет!

Встречайте первый в новом году и в новом сезоне выпуск подкаста "Капитанский мостик". Ведущие подкаста - Валентин Малых и Дмитрий Колодезев обсуждают прогнозы на новый год, рассматривают ключевые аспекты рынка чипов, аспекты регулирования чатботов в здравоохранении, восприятие искусственного интеллекта, его влияние на экономику и коммодитизацию, а также прогнозы по автоматизации программирования.
Смотрите видео на каналах ⤵️
ODS VK Video
ODS YouTube

📩 Присылайте новости для обсуждения в канал "Дата-капитаны" в mattermost (авторизуйтесь через ODS.ai).

Читать полностью…

Data Science by ODS.ai 🦜

Сервис доставки «изнутри»: увольняющийся программист, работавший в западном сервисе доставки, поделился подробностями алгоритмов и внутренней кухни

Я бэкенд-инженер. Я сижу на еженедельных встречах по планированию спринтов, где продакт-менеджеры обсуждают, как выжать ещё 0,4% маржи из «человеческих активов» (именно так они называют курьеров в схемах баз данных)

Во-первых, «Приоритетная доставка» — это полный обман. Нам её продавали как «психологическое добавление ценности». Как я и писал в заголовке: когда вы платите лишние $2,99, в JSON-объекте заказа просто меняется булев флаг, но логика диспетчеризации его буквально игнорирует. Это никак не ускоряет доставку

В прошлом году мы даже проводили A/B-тест: мы не ускоряли приоритетные заказы, мы намеренно задерживали обычные на 5–10 минут, чтобы приоритетные ощущались быстрее на их фоне

Руководству это понравилось. Мы заработали миллионы чистой прибыли, просто ухудшив стандартный сервис, а не улучшив премиальный

Но то, от чего мне реально становится плохо — и главная причина, по которой я ухожу, — это «Индекс отчаяния». У нас есть скрытая метрика для курьеров, которая отслеживает, насколько они отчаянно нуждаются в деньгах, исходя из их поведения при принятии заказов

Если курьер обычно выходит в онлайн в 22:00 и мгновенно принимает любой мусорный заказ за $3 без колебаний, алгоритм помечает его как «Высокое отчаяние»

После этого система намеренно перестаёт показывать ему высокооплачиваемые заказы. Логика простая: «Зачем платить этому парню $15 за поездку, если мы знаем, что он в таком отчаянии, что сделает её за $6?»

Хорошие заказы с чаевыми мы оставляем «случайным» курьерам, чтобы заманить их и превратить процесс в игру, а тех, кто работает полный день, просто перемалывают в пыль

Затем идёт «Сбор за льготы». Вы, вероятно, видели этот $1,50 — «Сбор в ответ на регулирование» или «Сбор на льготы для водителей», который появился в чеке после принятия новых трудовых законов

Формулировка специально сделана так, чтобы у вас было ощущение, что вы помогаете работнику

На самом деле эти деньги напрямую идут в корпоративный «чёрный фонд», который используется для лоббирования против профсоюзов курьеров

У нас есть отдельный внутренний центр затрат под названием «Защита политики», и этот сбор напрямую его финансирует. Вы буквально платите за дорогих юристов, которые борются за то, чтобы курьер, доставивший вам еду, оставался бездомным

Что касается чаевых, мы, по сути, занимаемся «Кражей чаевых 2.0». Мы больше не «воруем» их напрямую в юридическом смысле, потому что нас за это засудили. Вместо этого мы используем предиктивное моделирование, чтобы динамически снижать базовую оплату

Если алгоритм прогнозирует, что вы — «щедрый на чаевые» клиент и, скорее всего, оставите $10, курьеру предлагают жалкие $2 базовой оплаты. Если вы не оставляете чаевых, ему предлагают $8 базовой оплаты, просто чтобы заказ вообще был выполнен. В итоге ваша щедрость не вознаграждает курьера — она субсидирует нас. Вы платите его зарплату вместо компании.

===

Ваши ставки, господа, как там дела в доставке у российских компаний?

И зачем создавать из WB конкурента Яндекса в том же такси, например... Загадка!

Telegram | Дзен | MAX

Читать полностью…

Data Science by ODS.ai 🦜

😆 Это было не просто смело

Dell открыто признала, что потребители не заинтересованы в покупке ПК с искусственным интеллектом.

В рекламе новой линейки устройств от Dell упоминания ИИ сведены к нулю, хотя устройства способны работать с нейросетями.

↖️ https://kod.ru/dell-ai-pc

Читать полностью…

Data Science by ODS.ai 🦜

🔥 Год ChatGPT Plus бесплатно: экономим 20 000 рублей

Нашли рабочую лазейку в правилах OpenAI.
Вы получаете полноценный аккаунт без лимитов и с доступом ко всем топовым моделям.
Инструкция (займет 2 минуты):

1️⃣ Переходим на сервис временной почты: https://em.bjedu.tech/en/
2️⃣ Важно: в списке доменов выбираем erzi me.
3️⃣ Регистрируем новый аккаунт ChatGPT на этот адрес.
4️⃣ Получаем код подтверждения в почту - готово!

⚡️ Проверили, пока еще работает

@data_analysis_ml

Читать полностью…

Data Science by ODS.ai 🦜

Малайзия, Франция и Индия пошли против ИИ-чат-бота Grok

ИИ разрабатываемый компанией Илона Маска, снова оказался в центре скандала. Grok был создан стартапом xAI и позже интегрирован в социальную сеть X. Пользователи платформы обнаружили, что при загрузке обычной фотографии и указании в запросе «удалить одежду», чат-бот генерировал реалистичное изображение с имитацией обнажённого тела. Такие материалы в ряде случаев даже становились публичными, попадая в ленту X.

Индия направила письмо компании X, предписав провести всестороннюю проверку чат-бота. Власти Малайзии уже расследуют изображения, после жалоб на неправомерное использование ИИ. Франция объявила контент незаконным.

Мой Компьютер

Читать полностью…

Data Science by ODS.ai 🦜

Серега @southfreebird параллельно с работой в Nebius с друзьями сделал крутой open-source проект!

Авторы: @southfreebird, @Olegbalakhnov и @zaringleb.

Ребята обучили и выложили в open-source VLA-модель на базе VLA-0 от Nvidia, только с backbone в 6 раз меньше (0.5B vs 3B в оригинальной работе), которая показывает success rate 94.1% на Libero benchmark (против 94.7% у оригинальной модели).

VLA (Vision-Language-Action) это модель, которая смотрит на картинку, понимает текстовую команду и сразу выдаёт действие для робота, типа «возьми кубик и положи справа».

Вообще порог входа в robotics ML всё ещё достаточно высокий, поэтому у ребят крутая цель: сделать в open-source воспроизводимые рецепты для файнтюна небольших моделей на небольшом количестве демонстраций.

Ссылка на блогпост и модель:
https://robot-learning-collective.github.io/vla-0-smol

Если интересно следить, ребята завели Discord:
https://discord.gg/XcZVY2kxj9

Ну и пишите, если будут вопросы!

Читать полностью…

Data Science by ODS.ai 🦜

всем привет, если вам нечем заняться на новогодние праздники, кроме доедания салатов, то еще есть возможность залететь в соревнование по переводу на тюркские языки (будет идти до конца праздников)

тем более, что появился повод, прямо под ёлочку 🎄 Tencent выпустили обновление своих моделей для машинного перевода Hunyuan 1.5 (если я правильно понял, то наилучшим переводом 混元 будет "первичный бульон", как источник для всего разнообразия жизни)

коллеги выпустили две новых модели 1.8B и 7B, результаты (на картинке) впечатляют - бьют специализированные переводчики от Google и Microsoft, правда, проигрывают Gemini Pro (что, конечно, неудивительно)

кстати, часть результатов на FLORES-200, который среди 200 языков включает башкирский, казахский, кыргызский и татарский, так что можно залететь в соревнование с этими моделями; присоединяйтесь!

@valuableai

Читать полностью…

Data Science by ODS.ai 🦜

Есть Юра, которого вы может даже видели в стартап-тусовке. Юра стажировался в БигТехе в Штатах, а в 2023 запустил Fluently и нашёл с ним вот то самое! PMF.

Fluently — приложение, которое анализирует звонки на английском языке и помогает работать над акцентом, улучшать грамматику и растить словарный запас. Юра поднял пресид и прошел в YC W24.

Сейчас Юра ищет Senior AI Engineer, который быть может читает этот канал 🙂

📍Remote
💵 Оплата в USD
🚀За последние 8 месяцев выросли со $100k до $6M ARR. В команде сейчас 20 человек, ещё нет корпорации. Инвестиции – $2.5M, т.е. запас прочности есть. Хорошее время чтобы присоединиться.

Что нужно:
- Развивать голосового AI-агента: LiveKit/WebRTC, streaming ASR/TTS, RAG, function-calling, написание промптов и тд.
- Тренировать и деплоить ML модели в прод: ASR/LLM/TTS/voice-related.
- Обеспечивать ownership: алерты, трейсинг, оптимизация латенси, быстрый фикс проблем.

Что дают:
- Конкурентная зарплата в USD + опционы.
- Remote-first: работа из любой точки мира через Deel.
- Поездка в США на месяц для совместной работы и командные оффсайты.

Откликаться: тут.

Читать полностью…

Data Science by ODS.ai 🦜

👀 Vxunderground отмечают удивительное: OSINT-исследователь под ником "Harrris0n" создал специальный мини-проект Firehound, взявшись за крайне трудоёмкую задачу, а именно выявление "ИИ-шлака" в магазине приложений Apple App Store.

🚰🚰🚰🚰 На момент написания поста было выявлено 198 iOS-приложений, которые в той или иной форме допускают ↔️ утечку пользовательских данных. Неудивительно, что лидирующие позиции занимают приложения, так или иначе связанные с ИИ — различные чат-боты и ИИ-помощники.

На первом месте по объёму утечек сейчас находится приложение «Chat & Ask AI by Codeway». Оно раскрыло информацию о 18 миллионах пользователей, включая:

🔻имя;
🔻адрес электронной почты;
🔻дату создания учётной записи;
🔻сообщения (отправленные, полученные, содержание и метаданные);
🔻голосовые чаты

Все сообщения, которые вы когда-либо отправляли через это приложение, остаются незащищенными.

Подумайте о том, в чем люди признаются искусственному интеллекту — проблемы с психическим здоровьем, трудности в отношениях, финансовые проблемы, медицинские вопросы, вещи, о которых вы никогда бы не рассказали другому человеку.

А теперь представьте, что все это связано с вашей электронной почтой и номером телефона и доступно любому.

Разработчики должны понести ответственность за такой уровень халатности.

— комментирует Harrris0n.

Фактически всё, что вы когда-либо сообщали этому ИИ-боту, оказалось доступным извне. Речь идёт более чем о 400 000 000 сообщений. В слитых переписках содержится абсолютно всё, о чем люди говорили с ботами.

Следом в так называемом «шлак-метре» идёт приложение «YPT — Study Group», которое на данный момент раскрывает данные более чем 2 миллионов пользователей, включая:

🔻ИИ-токены;
🔻идентификаторы пользователей;
🔻пользовательские ключи;
🔻переписку (отправленную, полученную, содержание).

Исследователь отметил, что сливается всё: от обсуждения образования и фитнеса до шокирующих вещей, таких как переписки CSAM (детская порнография) и странных трендов вроде «LooksMaxxing» (улучшение внешности).

😱 Юзеры в комментариях к посту про Firehound критикуют Apple и Google за то, что они допускают такой "дырявый софт" в свои магазины.

Разработчики массово клепают небезопасные приложения-обертки для ИИ («мусорный софт»), а в результате утекают самые интимные переписки и личные данные миллионов людей.

Перед нами бесконечная чёрная дыра персональных данных. Речь идёт не только об именах и адресах электронной почты, но и о частных, интимных диалогах пользователей с ИИ-агентами.

Не могу не подчеркнуть: НЕ ДОВЕРЯЙТЕ VIBE КОДЕРАМ. НЕ ДЕЛАЙТЕ ЭТОГО. ИИ-КОД НЕБЕЗОПАСЕН. НЕ ДЕЛАЙТЕ ЭТОГО. ПРЕКРАТИТЕ ЭТО.

Это и есть
🤖«помойкоапокалипсис».

— комментируют VX.

✒️ Ознакомиться с мусором можно тут: https://firehound.covertlabs.io

@Russian_OSINT

Читать полностью…

Data Science by ODS.ai 🦜

🌟 GLM-4.7 Flash: лайт-версия флагмана GLM-4.7.

В полку моделей, тех, что можно запустить локально, не продавая почку, прибыло.

ZAI выкатили GLM-4.7 Flash - облегченную версию GLM-4.7 на 30 млрд. параметров, с контекстным окном в 128К на архитектуре MoE.

Со слов создателей, модель должна занять нишу между сегментом SLM и проприетарными мастодонтами, предлагая SOTA-уровень в кодинге.

🟡MoE
Всего 30B, но активных параметров на токен гораздо меньше, официальной инфы нет, но в сообществе пишут, что 3 млрд.

🟡Interleaved Thinking
Киллер-фича для агентов, которая досталась в наследство от старшей GLM-4.7. Обычно модели выплевывают весь свой CoT в начале, а вот эта техника дает возможность модели думать перед каждым вызовом инструмента.

🟡Файнтюн на эстетику и DevOps
Опять-таки, со слов Zai, они натаскали GLM-4.7 Flash не просто писать валидный HTML/CSS, а использовать актуальные паттерны, нормальные отступы и цветовые схемы.

Плюс, подтянули работу с CLI и девопс-задачами (понимает права доступа, навигацию по файловой системе).

🟡Цифры тестов выглядят как конфетка.

В SWE-bench Verified модель выбивает 59.2%. Для сравнения: Qwen3-30B-A3B: 22.0%, GPT-OSS-20B: 34.0%.

В математическом AIME 25 тоже обходит конкурентов - 91.6%. А вот на BrowseComp она лучше GPT-OSS-20B почти в 1.5 раза.

Вобщем, Flash-версия выглядит как идеальный кандидат для локальных кодинг-агентов. Если есть пара свободных видеокарт (или есть стойкость терпеть квантование на одной), это, возможно, лучшая рабочая лошадка на сегодня.



📌Лицензирование: MIT License.


🟡Модель
🟡Квантованные варианты под все
🟡Demo1
🟡Demo2

@ai_machinelearning_big_data

#AI #ML #LLM #GLM #ZAI

Читать полностью…

Data Science by ODS.ai 🦜

✔️ Sakana AI выпустили RePo - LLM, которые умеют “наводить порядок” в контексте

Обычные языковые модели читают текст как одну длинную ленту.

Что ближе к началу внимания - то “важнее”.
Что дальше - то модель видит хуже.

И тут появляется проблема: если важный факт спрятан где-то далеко среди шума, модель может его просто не использовать.

Она тратит внимание на всё подряд, вместо того чтобы сосредоточиться на главном.

Sakana AI предложили решение - RePo (Context Re-Positioning).

Идея очень понятная: модель получает модуль, который позволяет динамически “перепозиционировать” контекст.

Примерно как человек:
ты читаешь длинный документ, понимаешь, что важная часть была 20 страниц назад - и мысленно перечитываешь её , а лишнее игнорируешь.

Что делает RePo
- подтягивает важные куски информации ближе
- отодвигает шум и лишний текст
- помогает вниманию модели фокусироваться на нужном

В результате модель с такой памятью начинает лучше работать там, где LLM обычно страдают:
- когда контекст длинный
- когда много шума
- когда важные детали раскиданы далеко друг от друга
- когда данные структурированные (таблички, списки, правила)

Авторы показывают, что RePo даёт заметный прирост устойчивости, при этом не ухудшая общее качество.

▶️ Устойчивость к шуму (Noisy Context)
Средний результат по 8 noisy-бенчмаркам:

- Обычный RoPE: 21.07
- RePo: 28.31

🟡 Прирост: +7.24 пункта (сильно)

Авторы отдельно фиксируют ключевую цифру:
на noisy-eval (4K контекст) RePo лучше RoPE на +11.04 пункта.

🔥 Примеры прироста на конкретных задачах
(везде RePo > RoPE)

- TriviaQA: 61.47 → 73.02 (+11.55)
- GovReport: 6.23 → 16.80 (+10.57)
- 2WikiMultihopQA: 23.32 → 30.86 (+7.54)
- MuSiQue: 7.24 → 13.45 (+6.21)

Это шаг к моделям, которые не просто “читают что дали”, а умеют сами организовать свою рабочую память.

🟡Подробности: pub.sakana.ai/repo/
🟡Статья: arxiv.org/abs/2512.14391

@ai_machinelearning_big_data

#RePo #SakanaAI #LLM #AI #AIAgents #Context #LongContext #Attention

Читать полностью…

Data Science by ODS.ai 🦜

Привет!

Представляем Вашему вниманию второй выпуск подкаста "Капитанский мостик". В этом разговоре участники обсуждают как ИИ и данные перестраивают рынок, а платформы адаптируются под новые сценарии. Ведущие подкаста - Валентин Малых и Дмитрий Колодезев.
Смотрите видео на каналах ⤵️
ODS VK Video
ODS YouTube

📩 Присылайте новости для обсуждения в канал "Дата-капитаны" в mattermost (авторизуйтесь через ODS.ai).

Читать полностью…

Data Science by ODS.ai 🦜

🔥 CEO Cursor заявил, что они скоординировали сотни GPT-5.2 агентов, чтобы автономно собрать браузер с нуля всего за 1 неделю.

Цитата:

> “Мы построили браузер с GPT-5.2 прямо в Cursor. Он работал без остановки целую неделю.”


Что особенно дико:
- 3M+ строк кода
- тысячи файлов
- рендер-движок с нуля на Rust
- парсинг HTML / CSS

Если это правда - мы уже не “пишем код”, мы управляем армией агентов, которые строят целые продукты без сна и выходных.

https://x.com/mntruell/status/2011562190286045552

@data_analysis_ml

Читать полностью…

Data Science by ODS.ai 🦜

✔️ OpenAI открыла доступ к GPT-5.2 Codex через Responses API.

Модель, ранее доступная лишь в среде Codex, теперь предлагается широкому кругу разработчиков. OpenAI позиционирует версию 5.2 как инструмент для глубокого рефакторинга, написания сложной функциональности и аудита безопасности.

Модель поддерживает мультимодальный ввод и предлагает гибкую настройку глубины рассуждений — от низкого до очень высокого уровня.

За повышенную производительность придется платить: стоимость токенов выросла до $1.75 за миллион на вход и $14 на выход. Поддержка новой модели уже появилась в Cursor и Windsurf.
OpenAI Developers в сети X

✔️ Anthropic усиливает команду экспериментальных продуктов Labs.

Майк Кригер оставляет пост директора по продукту, чтобы сосредоточиться на создании новых инструментов в паре с Беном Манном. Руководство основной продуктовой стратегией переходит к Ами Вора, присоединившейся к компании в конце 2025 года; она возглавит Labs совместно с техническим директором Рахулом Патилом.

Подразделение зарекомендовало себя как генератор хитов Anthropic. Именно здесь родился Claude Code, который всего за 6 месяцев превратился в продукт с миллиардной выручкой и был разработан стандарт MCP, ставший отраслевым эталоном со 100 млн. загрузок ежемесячно.

Президент компании Даниэла Амодей говорит, что формат лаборатории позволяет действовать экстремально быстро: например, Cowork был создан с нуля именно в Labs всего за полторы недели.
anthropic.com

✔️ Z.AI представила модель GLM-Image.

GLM-Image стала важной вехой в технологической независимости КНР. Это первая модель, которая обучалась исключительно на китайском стеке - серверах Huawei Ascend Atlas 800T A2 и фреймворке MindSpore, без использования ускорителей NVIDIA.

Под капотом гибрид из 9-миллиардного авторегрессионного трансформера и 7-миллиардного диффузионного декодера на базе DiT. Разработчики утверждают, что такая связка превосходит конкурентов в рендеринге текста и создания инфографики.

API модели предлагается по цене примерно 1,5 цента за изображение, а веса выложены на HuggingFace и ModelScope.
z.ai

✔️ Google обновила модель Veo.

Google обновила свою видеомодель Veo до версии 3.1, добавив возможность генерации роликов с соотношением сторон 9:16, инструменты для апскейлинга до 4K и переработку функции референса по изображению.

3.1 лучше удерживает визуальную консистентность персонажей и окружения между сценами и точнее следует коротким промптам.

Новые возможности уже доступны в приложении Gemini, AI Studio и на Vertex AI.
blog.google

✔️ Скандал с суверенным ИИ в Южной Корее.

Госпроект Сеула стоимостью $6,9 млрд, призванный избавить страну от технологической зависимости от США и КНР, оказался в центре скандала: ключевые участники использовали опен-сорс решения китайских конкурентов.

Проверка показала, что 3 из 5 финалистов конкурса, компании Naver Cloud, SK Telecom и стартап Upstage заимствовали компоненты у Alibaba, DeepSeek и Zhipu AI. В частности, выяснилось, что визуальный энкодер флагманской модели Naver HyperCLOVA X на 99,5% совпадает с архитектурой Qwen 2.5.

Разработчики оправдываются инженерной целесообразностью, утверждая, что заимствовали лишь вспомогательные модули и код инференса. Однако, использование компонентов с китайскими копирайтами в проекте, который финансируется государством, вызвало жесткую критику общественности и поставило под угрозу квалификацию участников.
wsj.com


@ai_machinelearning_big_data

#news #ai #ml

Читать полностью…

Data Science by ODS.ai 🦜

⚡️ DeepSeek Engram: условная память LLM через поиск.

DeepSeek опять шатают устои архитектуры трансформеров свежайшим пейпером, который доказывает, что новое — это хорошо и очень хитро забытое старое.

Пока все пытаются запихнуть в LLM как можно больше слоев и параметров, DeepSeek задались вопросом: зачем тратить дорогой компьют на запоминание фактов, если их можно просто подсмотреть? Знакомьтесь:

🟡Engram — модуль, который возвращает нас к дедам с N-грамами.

DeepSeek предлагает разделить "думалку" (MoE-слои) и "хранилище знаний" (Engram):

🟢Hashed N-grams: модуль смотрит на входящий текст и нарезает его на N-грамы (последовательности токенов).

🟢O(1) Lookup: система делает мгновенный запрос в гигантскую хэш-таблицу эмбеддингов - это чисто статический поиск.

🟢Context-Aware Gating: самый сок. Модель не просто слепо берет данные из "хранилища знаний" - специальный гейтинг-механизм решает: "Нам сейчас нужен факт из памяти или будем думать сами?". Если найденный N-грам релевантен контексту, он подмешивается в скрытое состояние.

🟢Tokenizer Compression: чтобы хранилище знаний не лопнуло от мусора, похожие токены в нем схлопывают в один ID, например, "Apple" и "apple".

🟡Баланс распределения ресурсов.

Чтобы правильно поделить бюджет параметров между MoE и Engram посчитали сценарии масштабирования. График лосса от соотношения этих частей выглядит как буква U:

🟠Перекос в MoE (100% вычислений): модель тратит дорогие слои внимания на запоминание статики. Это неэффективно, лосс высокий.

🟠Перекос в Память (0% вычислений): модель превращается в гигантскую википедию. Она помнит факты, но у нее напрочь атрофируется ризонинг. Лосс тоже высокий.

🟢Золотая середина (дно U-кривой): 80% MoE и ~20% Engram.

🟡Тесты и результаты.

DeepSeek обучили модель Engram-27B и сравнили ее с классической MoE-27B при одинаковом бюджете параметров и FLOPs. Итоги:

Общее качество подросло: MMLU +3.4 пункта, HumanEval (код) +3.0.

На длинном контексте - разнос. В тесте на поиск иголки (NIAH) точность выросла с 84.2 до 97.0. Модель разгрузила слои внимания от запоминания локальных паттернов, и оно сфокусировалось на глобальном контексте.

Модель быстрее сходится. Engram берет на себя рутину в ранних слоях, тем самым позволяя модели сразу учиться сложным вещам.


🟡Архитектурный нюанс.

Таблица эмбеддингов для Engram может быть запредельно огромной (в пейпере разгоняли до 100B параметров) и, очевидно, в VRAM это не влезает.

Решили так: раз ID токенов известен до прогона слоя, то эти данные можно хранить в RAM и асинхронно подтягивать. В реале, оверхед от этой механики показал меньше 3%., т.е. мы получаем модель, которая знает больше, чем влезает в GPU, используя оперативку сервера.

🟡DeepSeek фактически легализовала подобие шпаргалок для LLM.

Вместо того чтобы заставлять модель учить все наизусть, ей дают гигантский справочник. Теоретически, это открывает путь к прекрасному ИИ светлого будущего, который может иметь условно-бесконечную память, ограниченную только объемом оперативки, а не VRAM.

Похоже, в V4 мы увидим как эта схема работает, ведь инсайдеры обещают у нее запредельные скилы.


🟡Техотчет
🖥Github


@ai_machinelearning_big_data

#AI #ML #LLM #Engram #Deepseek

Читать полностью…

Data Science by ODS.ai 🦜

🔥 Хочешь прокачаться в аналитике, но не просто читать теорию, а решать реальные задачи?

Мы запустили полностью бесплатный телеграм-тренажёр 👇

Тебя ждут сценарии, с которыми сталкиваются аналитики каждый день: от простых запросов до задач уровня собеседований.

Что внутри:

✔ живые кейсы из реальной практики
✔ удобный симулятор - как работа в компании, только бесплатно
✔ разбор ошибок — понимаешь не только «как», но и «почему»
✔ добавляем задачи с интервью и улучшаем бот вместе с сообществом

Начни тренироваться сегодня — и почувствуй уверенность в работе с данными.

t.me/Analitics_databot

Читать полностью…

Data Science by ODS.ai 🦜

Тацитное знание — это практическое личное знание, которое мы используем чтобы делать что-то в мире. Это именно то, что характеризует отличие теории от практики.

Когда теория есть в каждой LLM-ке или Ютуб ролике именно наличие практического опыта позволяет сэкономить время и силы для решения задач.

Ребята в AI Talent Hub и GIGASCHOOL сделали курс с фокусом на выводе проектов в прод под нагрузку, не забыв и про традиционные ipynb-тетрадки.

Вот это всё про дообучение, fine-tuning, PEFT, LoRA / QLoRA, RLHF. С актуальными LangChain, LangGraph, векторными базами чтобы можно было пройти фильтр HR-ов.

Про книгу Валеры и Арсения я не спрашивал, но уверен, что её затронут тоже.

Курс запускается уже третьим потоком (пофиксили баги и может сделали новых 🤷‍♀️)а преподают практики из крупных AI-команд, включая директора по разработке моделей в Газпромбанке Кристину Желтову, NLP Lead'а из X5 Tech Александра Потехина и CEO HiveTrace Евгения Кокуйкина.

Старт: 26 января на 25 недель. Дают диплом, есть рассрочка.
Ссылка: https://clck.ru/3R4Cen

Читать полностью…

Data Science by ODS.ai 🦜

Искусственный интеллект в проектах — помощник, а не начальник🤖

ИИ всё чаще появляется в рабочих процессах — но польза начинается не там, где он «думает за людей», а там, где снимает рутину.

Что уже можно автоматизировать без боли:
🟣 создавать задачи из писем и встреч;
🟣 следить за статусами и дедлайнами;
🟣 собирать отчёты и сводки;
🟣 подсвечивать перегруз и зависшие задачи.

Что ИИ делать не должен — принимать решения и брать ответственность. И именно с таким подходом он работает: человек решает, ИИ экономит время.

Почему управление проектами — идеальная среда для ИИ и как это уже реализовано внутри Kaiten — рассказываем в статье на Хабре: https://habr.com/ru/companies/kaiten/articles/974472/

Читать полностью…

Data Science by ODS.ai 🦜

📌Как делали MiniMax М2.1 и что будет дальше.

Когда говорят, что одна модель пишет код лучше другой, обычно имеется ввиду бенчмарк SWE-Bench. Модель получает реальный баг из настоящего проекта с Github, который она должна прочитать, найти ошибку и исправить её. Это частично повторяет ежедневную работу программиста.

Но у этого бенча, как и у любого другого, есть свои недостатки.

🟠SWE-Bench работает только с Python. В реальном мире разработчики имеют дело с Java, Go, TypeScript, Rust, C++ и еще кучей других.

🟠Бенчмарк только про исправление ошибок, а программисты еще пишут новые функции, занимаются рефакторингом и оптимизацией.

🟠Его результаты сильно зависят от того, в каком окружении работает модель.

И вот здесь MiniMax-AI задалась вопросом: как создать по-настоящему универсального ИИ-программиста?

Ответ они нашли
и реализовали его в своей свежайшей модели M2.1.

🟡Масштабирование окружения.

За этим расплывчатым термином кроется огромная система, которая оперирует популярными языками: JS, TS, Python, Java, Go, C++ и Rust.

Для этого с GitHub были собраны более 100 тыс. реальных задач с описанием проблемы, кодом и тестами. Это было непросто, так как сложные языки (Java или C++) требуют настройки и у каждого языка свои фреймворки и системы управления зависимостями.

Чтобы обучить модель на таком массиве данных, MiniMax построил инфраструктуру, способную запускать более 5 тыс. изолированных сред выполнения за максимально короткое время - 10 секунд.

🟡Выход за рамки баг-фиксов.

MiniMax-M2.1 обучали и генерации тестов и в результате оказалось, что это критически важный навык.

Предыдущая версия, M1, писала слишком простые тесты и часто выбирала неверные решения. M2.1 в этом преуспела и сравнялась по результатам с мощным конкурентом Claude Sonnet 4.5.

Еще она научилась оптимизировать производительность кода — на SWE-Perf показала средний прирост эффективности в 3.1%.

И наконец, M2.1 научили делать Code Review, для чего создали внутренний бенчмарк SWE-Review.

🟡Обобщение на незнакомых окружениях (Generalization on OOD Scaffolds).

Модель должна одинаково хорошо следовать длинным инструкциям и адаптироваться к разным способам управления контекстом диалога.

Команда провела тесты в mini-swe-agent, Droid и Claude Code и если посмотреть на цифры из их сравнительной таблицы, то можно увидель, что модель стала гораздо более гибкой и универсальной.

На том же SWE-Bench, при использовании Claude Code, MiniMax-M2.1 выбила 74 балла, что выше, чем у модели M2 с ее 69.2 баллами, и практически наравне с Claude Sonnet 4.5 и DeepSeek V3.2.

На другом тесте, OctoCodingBench, разрыв еще больше: 26.1 у новой модели против 13.3 у старой.

🟡Планы на 2026.

Во-первых, MiniMax планирует научить модель оценивать не только правильность кода, но и читаемость кода, качество комментариев, прозрачность процесса работы.

Во-вторых - повысить эффективность решения задач, чтобы модель не делала лишних шагов, например, не перечитывала один и тот же файл по несколько раз.

Но самое интересное — это их планы по RL Scaling, и создание так называемой Coding World Model.

Идея в том, чтобы построить модель-симулятор, которая сможет предсказывать результат выполнения кода, не запуская его в реальности.


Наконец, они планируют расширяться в узкоспециализированные области: разработка GPU Kernel, компиляторов и смарт-контрактов.

Похоже, концепция "ИИ-кодера" становится все более реальной. Успех MiniMax-M2.1 показал, что дело уже не в написании отдельных строк кода, а в комплексном понимании всего процесса разработки.


@ai_machinelearning_big_data

#AI #ML #LLM #MiniMaх

Читать полностью…

Data Science by ODS.ai 🦜

⚡️ Google показала интересный пример того, как мультимодели уже помогают в гуманитарных исследованиях.

Gemini 3.0 Pro смогла расшифровать загадочные пометки в «Нюрнбергской хронике», которым более 500 лет. В модель залили сканы страниц и попросили не просто переписать текст, а объяснить, что означают заметки с учетом контекста.

Оказалось, что круговые таблицы на полях были попыткой примирить две конкурирующие библейские хронологии и вычислить год рождения Авраама.

Сложность состояла в том, что заметки смешивали латинские сокращения, римские цифры и обрывки надписей.

Gemini связала вычисления с системой датировки Anno Mundi (год от сотворения мира), привязала их к традициям Септуагинты и еврейской Библии, а затем перевела в «до н.э.», получив расхождение примерно в 100 лет.

siliconangle.com/2026/01/01/googles-gemini-3-0-pro-helps-solve-long-standing-mystery-nuremberg-chronicle/

@data_analysis_ml

Читать полностью…

Data Science by ODS.ai 🦜

вообще эта новость вполне могла быть в любой день, но иллюстрация требует поставить ее в субботу; суть новости - Google выкатил генератор заголовков для новостных сюжетов, и все заверте... я могу восстановить логику событий так, что кто-то решил обучить генератор делать привлекательные (кликабельные) заголовки; как следствие, генератор честно выучился делать кликбейт - то есть максимально "желтые"

я думаю, что люди, которые обучали, не были знакомы со спецификой новостного домена, что еще раз подчеркивает необходимость погружения в область, прежде, чем "палить из всех столов", в смысле обучать самые модные модели на любых доступных данных

@valuableai

Читать полностью…

Data Science by ODS.ai 🦜

📌Интервью 23-летнего сотрудника OpenAI, который выучил DL без учебы в университете.

Интересная история, которая заставляет задуматься об образовании и карьере.

Знакомьтесь - Габриэль Петерссон. Ему всего 23 года, он бросил школу в глухом шведском городке, не учился в ВУЗе, но прямо сейчас работает научным сотрудником в OpenAI, в команде Sora.

🟡Мы живем во время, когда монополия ВУЗов на фундаментальные знания пошатнулась.

Традиционное образование - это путь "снизу вверх". Хочешь заниматься машинным обучением? Сначала выучи линейную алгебру, потом матан, потом тервер. Это долго и зачастую теряется мотивация и понимание, зачем тебе это нужно прямо сейчас.

Масла в котел демотивации подливают компании, которые тоже не очень хотят ждать. Palantir, например, уже нанимает старшеклассников, минуя вузы. И история Габриэля — показательный пример тенденции.

Он не проходил классический путь "школа — бакалавриат — магистратура". Вместо этого он использовал ChatGPT как персонального ментора. И речь не о том, чтобы попросить чат-бот «напиши код за меня». Габриэль использовал метод, который он сам называет «рекурсивным заполнением пробелов».

Его суть том, чтобы идти как бы "сверху вниз". Он берет сложный проект: например, хочет разобраться, как работают модели диффузии. Он просит ChatGPT написать код. Естественно, сначала он ничего не понимает.

И вот тут он начинает задавать вопросы к каждому непонятному модулю. «Что делает этот блок?». Допустим, это блок ResNet. Он спрашивает: «Почему это помогает модели учиться?». И копает глубже. Если всплывает незнакомое понятие - он просит объяснить математическую базу, лежащую в его основе.

Это и есть рекурсия: слой за слоем, пока не заполнятся все пробелы в знаниях. Он не учит математику впрок, он учит ту математику, которая нужна ему прямо сейчас для работы кода.

🟡Но как иностранец без диплома получил визу в США и работу в Кремниевой долине?

Для получения визы талантов (O1) он использовал свою репутацию на Stack Overflow и рекомендации, которые просмотрели миллионы людей, как доказательство вклада в индустрию.

Габриэль советует: забудьте про HR. Резюме и дипломы не важны, если вы можете показать результат. Его стратегия — MVP или демо продукта и написать напрямую топ-менеджменту компании с предложением бесплатной работы на неделю. Это снимает риски для нанимателя и дает вам шанс показать себя.

Его главный посыл: если вы готовы активно задавать вопросы и не боитесь выглядеть глупо перед ИИ, изучая основы, вы уже входите в 1% лучших. Потому что большинство людей просто плывут по течению.

🔜 Посмотреть полное интервью


@ai_machinelearning_big_data

#AI #ML #Interview #OpenAI

Читать полностью…
Subscribe to a channel