physics_lib | Неотсортированное

Telegram-канал physics_lib - Physics.Math.Code

135519

VK: vk.com/physics_math Чат инженеров: @math_code Учебные фильмы: @maths_lib Репетитор IT mentor: @mentor_it YouTube: youtube.com/c/PhysicsMathCode Обратная связь: @physicist_i

Подписаться на канал

Physics.Math.Code

О свойствах параболы

▪️ Вершина параболы — точка, в которой она меняет направление (самая высокая или низкая точка). Координаты вершины можно найти по формуле: x = −b / (2a), y = f(x). Точка параболы, ближайшая к её директрисе, называется вершиной этой параболы. Вершина является серединой перпендикуляра, опущенного из фокуса на директрису.

▪️ Парабола (греч. παραβολή — приближение) — плоская кривая, один из типов конических сечений.

▪️ Античные математики определяли параболу как результат пересечения кругового конуса с плоскостью, которая не проходит через вершину конуса и параллельна его образующей (см. рисунок). В аналитической геометрии удобнее эквивалентное определение: парабола есть геометрическое место точек на плоскости, для которых расстояние до заданной точки (фокуса) равно расстоянию до заданной прямой (директрисы). Если фокус лежит на директрисе, то парабола вырождается в прямую.

▪️Каноническое уравнение параболы в прямоугольной системе координат: y² = 2⋅p⋅x, где p — фокальный параметр, равный расстоянию от фокуса до директрисы

▪️В общем случае парабола не обязана иметь ось симметрии, параллельную одной из координатных осей. Однако, как и любое другое коническое сечение, парабола является кривой второго порядка и, следовательно, её уравнение на плоскости в декартовой системе координат может быть записано в виде квадратного многочлена: A⋅x² + B⋅x⋅y + C⋅y² + D⋅x + E⋅y + F = 0

▪️Парабола в полярной системе координат (ρ,ϑ) с центром в фокусе и нулевым направлением вдоль оси параболы (от фокуса к вершине) может быть представлена уравнением ρ⋅(1 - cos(ϑ)) = p, где p — фокальный параметр

▪️Оптическое свойство. Пучок лучей, параллельных оси параболы, отражаясь в параболе, собирается в её фокусе. И наоборот, свет от источника, находящегося в фокусе, отражается параболой в пучок параллельных её оси лучей. Сигнал также придет в одной фазе, что важно для антенн.

▪️Если фокус параболы отразить относительно касательной, то его образ будет лежать на директрисе. Множество всех точек, из которых парабола видна под прямым углом, есть директриса. Отрезок, соединяющий середину произвольной хорды параболы и точку пересечения касательных к ней в концах этой хорды, перпендикулярен директрисе, а его середина лежит на параболе.

▪️Все параболы подобны. Расстояние между фокусом и директрисой определяет масштаб.

▪️Траектория фокуса параболы, катящейся по прямой, есть цепная линия

▪️Описанная окружность треугольника, описанного около параболы, проходит через её фокус, а точка пересечения высот лежит на её директрисе

Вывод уравнения формы цепной линии. Физика нити, имеющей массу

💫 Математика эллипса: всё, что нужно знать

#физика #математика #моделирование #опыты #эксперименты #physics #видеоуроки #научные_фильмы #math #geometry

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

⚡️ Уравнения Максвелла

К первой половине 19 века понимание электромагнетизма улучшилось благодаря многочисленным экспериментам и теоретическим работам. В 1780-х годах Шарль-Огюстен де Кулон установил свой закон электростатики. В 1825 году Андре-Мари Ампер опубликовал свой закон силы. В 1831 году Майкл Фарадей открыл электромагнитную индукцию в ходе своих экспериментов и предложил силовые линии для ее описания. В 1834 году Эмиль Ленц решил проблему направления индукции, а Франц Эрнст Нейман записал уравнение для расчета индуцированной силы при изменении магнитного потока. Однако эти экспериментальные результаты и правила были плохо организованы и иногда сбивали ученых с толку. Требовалось всеобъемлющее изложение принципов электродинамики.

Эта работа была выполнена Джеймсом К. Максвеллом на основе серии статей, опубликованных с 1850-х по 1870-е годы.

В 1850-х годах Максвелл работал в Кембриджском университете, где на него произвела впечатление концепция силовых линий Фарадея. Фарадей создал эту концепцию под впечатлением от Роджера Босковича, физика, который также повлиял на работу Максвелла. Позже, Оливер Хевисайд изучил Трактат Максвелла по электричеству и магнетизму и использовал векторное исчисление, чтобы синтезировать более 20 уравнений Максвелла в 4 узнаваемых, которые используют современные физики. Уравнения Максвелла также вдохновили Альберта Эйнштейна на разработку специальной теории относительности.

Экспериментальное доказательство уравнений Максвелла было продемонстрировано Генрихом Герцем в серии экспериментов в 1890-х годах. После этого уравнения Максвелла были полностью приняты учеными. #научные_фильмы #физика #электродинамика #электричество #магнетизм #science #видеоуроки #physics

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

⚡️ Задача по электронике для наших подписчиков: Можно ли с помощью такой конструкции получить дуговой разряд или видео является фейком?

🔥 Свечение газов вблизи катушки Тесла

⚡️ Arduino в качестве управляющего элемента в большом станке — это возможно

💽 Самые массовые HDD Seagate ST-225

💥 Лазерное скальпирование микросхемы

📕 Основы микроэлектроники [2001] Степаненко И.П.

📘 Практикум начинающего радиолюбителя [1984] (2-е изд., перераб. и доп.) Борисов В.Г.

⚡️ Ионофон

📚 Искусство схемотехники, 4-е издание (в 3 томах) [1993—2014] Пауль Хоровиц, Уинфилд Хилл

#физика #схемотехника #электродинамика #опыты #эксперименты #physics #видеоуроки #электроника #science

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

🟢 Задача по физике [механика]

Как вы считаете, возможны ли в реальной жизни колебания, представленные на анимации, когда фиксированная точка на поверхности описывает окружность (эллипс) ? При каких условиях и каких волнах такое возможно? Есть ли какие-то особенности в характере взаимодействия между частицами на данной модели? #физика #опыты #physics #мехаемка #задачи #колебания #gif

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

📙 Задачи по математике. Начала анализа. Справочное пособие [1990] Вавилов, Мельников, Олехник, Пасиченко

Книга содержит теоретические сведения и систематизированный набор задач по началам анализа. Методическое построение справочника позволяет углубленно повторить этот раздел математики и самостоятельно подготовиться к поступлению в вуз с повышенной математической программой. Типовые задачи сопровождаются подробным разбором. Создана на основе преподавания математики на подготовительном отделении МГУ. Для поступающих в вузы и преподавателей.

📗 Задачи по математике. Алгебра. Справочное пособие [1987] Вавилов, Мельников, Олехник, Пасиченко

Настоящая книга является справочным пособием по методам решения алгебраических задач. Она создана на основе опыта преподавания математики на подготовительном отделении Московского государственного университета им. М. В. Ломоносова. Книга содержит материал по четырем темам: «Действительные числа и алгебраические выражения», «Уравнения, неравенства и системы», «Элементы комбинаторики», «Комплексные числа». В начале каждого параграфа приводятся краткие теоретические сведения, затем на примерах, в процессе решения типовых задач, иллюстрируются различные методы их решения. В целях типизации методов не всегда даны самые короткие решения; иногда излагаются несколько различных способов решения одной и той же задачи, для сравнения эффективности методов.

📘 Задачи по математике. Уравнения и неравенства. Справочное пособие. [1988] Вавилов, Мельников, Олехник, Пасиченко

Содержит справочные сведения по методам решения уравнений и неравенств с одним неизвестным: содержащих знак абсолютной величины, иррациональным, показательным и логарифмическим. Содержит задачи, предлагаемые на вступительных экзаменах. Методы иллюстрируются примерами. Тесно примыкает к справочному пособию авторов «Задачи по математике. Алгебра». Для самостоятельного повторения курса алгебры, для слушателей подготовительных отделений вузов, а также для поступающих в вузы. #олимпиады #математика #геометрия #подборка_книг #алгебра #задачи #высшая_математика #математический_анализ #math #science

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

🔥 Свечение газов вблизи катушки Тесла⁠⁠

Коллекция газов для спектрального излучения: чистые образцы водорода, азота и пяти благородных инертных газов подвергаются воздействию высокочастотного импульсного поля миниатюрной катушки Тесла. Каждый газ имеет характерное напряжение пробоя и спектр излучения. Обратите внимание, что азот имеет самое высокое напряжение пробоя и светится только в непосредственной близости от катушки, где поле наиболее интенсивно, тогда как у неона и гелия самое низкое напряжение пробоя, и они начинают светиться на большем расстоянии от катушки. Цвет каждого газа обусловлен сочетанием цветов, излучаемых электронными энергетическими переходами, характерными для каждого элемента - основы спектроскопии. Трубка Криптона также демонстрирует интересные колебания с этой конкретной катушкой Теслы. #атомная_физика #химия #физика #physics #видеоуроки #электроника #gif

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

🔥 Сварка под слоем флюса — разновидность дуговой сварки, при которой процесс проходит в присутствии гранулированного или порошкообразного флюса. Флюс защищает зону сварки от воздействия воздуха и окисления, а также препятствует разбрызгиванию металла.

Сварочная проволока подаётся на детали через специальное устройство (горелку). Флюс, насыпанный вокруг и над местом сварки, плавится и формирует защитную ванну. По мере движения сварочной головки флюс покрывает дугу и формирует расплавленный металл. Флюс сплавляется, взаимодействует с металлом, очищает его и угнетает образование вредных газов и оксидов. После прохождения участка сварки остывший флюс в виде шлака удаляется с поверхности шва.

Мартенсит

⛓️‍💥 Какие только технологии не применяли в СССР

⚡️ Большие токи в нескольких витках провода вызывают существенное магнитное поле.

💥 Лазерная сварка с разной формой луча

🔥 Spot-сварка

💥 Импульсная аргонодуговая сварка

💥 Электросварка и плавление электрода 💫

#физика #опыты #сопромат #сварка #пайка #видеоуроки #physics #science #эксперименты #наука

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

📚 Книги по математике и геометрии от автора: Александр Борисович Василевский

💾 Скачать книги

📘 Обучение решению задач по математике [1988] Василевский
📕 Методы решения задач [1974] Василевский А.Б.
📔 Устные упражнения по геометрии [1983] Василевский А.Б.
📗 Методы решения геометрических задач [1974] Василевский А.Б.

Василевский Александр Борисович — кандидат педагогических наук (род. 1934). Некоторые работы автора:
▪️ «Обучение решению задач по математике»: учебное пособие для педагогических институтов по физико-математическим специальностям (Минск, «Вышэйшая школа», 1988);
▪️ «Устные упражнения по геометрии: 6–10-е классы»: пособие для учителя (Минск, «Народная асвета», 1983);
▪️ «Метод параллельных проекций»: пособие для учителя (Минск, «Народная асвета», 1985);
▪️ «Обратная связь на уроках математики» (Минск, МГПИ, 1979);
▪️ «Задания для внеклассной работы по математике: 9–11 кл.»: книга для учителей (Минск, «Нар. асвета», 1988);
▪️ «Упражнения по алгебре и началам анализа: книга для учителя» (Минск, «Народная асвета», 1991).

#математика #подборка_книг #math #высшая_математика #математический_анализ #алгебра #calculus

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

🧲 С увеличением частоты вращения диска с магнитами наблюдается интересный эффект: ферромагнитная жидкость начинает вращаться в противоположную сторону. Связано это с тем, что достигается необходимое смещение фазы, когда предыдущая «пучность» жидкости (сгусток ферро-частиц) оказывается ближе к магниту, приближающемуся сзади, чем к магниту, который ушел вперед. Происходит смещение фаз, жидкость начинает вращаться в противоположную сторону. Иногда такой же эффект наблюдается оптике (Смотри Муаровые узоры).

#физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки #схемотехника #радиофизика

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

Сдаешь ЕГЭ в 2026 году? Тогда читай внимательно! 👨‍🎓

Мы — Профиматика, онлайн-школа по подготовке учеников 10 и 11 классов к успешной сдаче ЕГЭ на 90+ по математике с индивидуальным подходом к каждому.

Мы знаем, что твой путь в 11 класс начинается уже сейчас. И у тебя может быть 100500 вопросов:

🔸 Как правильно начать готовиться к ЕГЭ?
🔸 Когда это лучше делать: сейчас или можно потом?
🔸 Как выбрать вуз, куда точно возьмут?
🔸 Сколько баллов нужно набрать, чтобы пройти на бюджет?
🔸 Какие предметы выбрать, если нравится одно, а хорошо получается другое?

... и еще много других...😵‍💫

Мы знаем, что тебе может быть сложно!
Только 83% учеников начинают задумываться об этом осенью, и больше 50% из них теряют баллы на ЕГЭ из-за нехватки
времени на подготовку!


Мы решили тебе помочь!
🔤🔤🔤 Лови 3 БЕСПЛАТНЫХ файла, которые помогут тебе сориентироваться при подготовке к ЕГЭ 2026 по профильной математике!

Переходи по ссылке, жми «начать» — и мы отправим тебе эти файлы в ЛС
https://th.link/Xz48L

🚩 Определиться с будущей профессией
🚩 Выбрать вуз мечты и предметы для подготовке к ЕГЭ
🚩Разобраться со шкалой ЕГЭ и понять, сколько баллов нужно именно тебе.

Забирай файлики скорее ⬇️
https://th.link/Xz48L

Читать полностью…

Physics.Math.Code

🧲 Насос без подвижных частей может перекачивать жидкость, но как? ⚡️

Электромагнитный насос [ магнитогидродинамический насос] — насос, предназначенный для перекачки расплавленных металлов, растворов солей и других электропроводящих жидкостей. Принцип действия электромагнитного насоса следующий. Внешнее магнитное поле устанавливается под прямым углом к нужному направлению движения жидкого вещества, через вещество пропускается ток. Вызванная таким образом сила Ампера перемещает жидкость.

Электромагнитные насосы используются для перемещения расплавленного припоя во многих машинах для пайки волной, для перекачки жидкометаллического теплоносителя в ядерных реакторах (например в реакторе БН-800, а также на ЯЭУ "Бук" и "Топаз") и в магнитогидродинамическом приводе.

Эйнштейном и Силардом была разработана модель холодильника, в котором электромагнитный насос приводил в движение расплавленный металл, который сжимал рабочий газ, пентан. #физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

👨‍🎓Более 500 школьников выпустились из кружков по подготовке к всероссийским олимпиадам “Т-Поколение”

В этом году выпускной “Т-Поколения” прошел в московской штаб-квартире Т-Банка для более чем 200 ребят, их родителей и учителей из Москвы, Ижевска, Иннополиса, Челябинска и других городов страны.

Кружки “Т-Поколение” от Т-Банка включают в себя бесплатную подготовку к Всероссийским олимпиадам школьников по математике и информатике, а также Национальной олимпиаде по анализу данных DANO и Международной олимпиаде по промышленной разработке PROD. Обучение велось очно и онлайн. Преподаватели кружков — победители и жюри Всероссийских и Международных олимпиад по математике и информатике, тренеры сборных команд и эксперты Т-Банка, среди которых – Антон Белый, тренер российской сборной к IOI и Александр Горбунов, тренер сборной Москвы ко Всероссийской олимпиаде школьников, разработчик Т-Банка.

С момента запуска “Т-Поколения” в 2018 году выпускниками кружков стали более 10 000 человек, 544 из них выиграли или стали призерами Всероссийских олимпиад школьников по математике и информатике.

▪️Выпускники кружков этого года получили возможность по упрощенному отбору поступить в Центральный университет — российский инновационный вуз, внедряющий в высшее образование STEM-подход (Science, Technology, Engineering, and Mathematics).

▪️83 одиннадцатиклассника, которые успешно прошли обучение в кружках и стали победителями и призерами ВсОШ по математике и информатике, стали стипендиатами Т-Банка. Компания в течение всего следующего учебного года будет выплачивать им по 25 000 рублей при условии поступления в российский вуз .

#математика #факты #задачи #science #видеоуроки #олимпиады #problems #science #math

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

📕 Курс физики для довузовской подготовки [2008] Горбунов

💾 Скачать книгу

«Физика на самом деле не что иное, как поиск предельной простоты, но пока все, что у нас есть, — это своего рода элегантный беспорядок».
— Билл Брайсон.


#физика #подборка_книг #задачи #наука #science #physics

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

Скатывание цилиндров по наклонной плоскости. Данный опыт показывает, как существенно вращательное движение зависит от того, как приложены к телу силы.

#физика #видеоуроки #олимпиады #problems #задачи #опыты #эксперименты #механика #сопромат #кинематика #science

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

⚙️ Бесконечный крутящий момент — как объяснили сложные вещи в ЦентрНаучФильм

#физика #видеоуроки #факты #задачи #опыты #эксперименты #механика #сопромат #кинематика #science

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

🌪 Теория относительности — это комплекс из двух теорий, которые описывают свойства пространства, времени и гравитации. Они были предложены Альбертом Эйнштейном в начале XX века. Смотреть полный фильм: 🕰 Что такое теория относительности [20 мин фильм]

▪️ Специальная теория относительности. Описывает поведение объектов, которые движутся с постоянной скоростью. Теория утверждает, что время и пространство не являются абсолютно фиксированными для всех наблюдателей — они могут изменяться в зависимости от скорости объекта. Некоторые принципы специальной теории относительности:
— Принцип относительности — законы физики одинаковы для всех наблюдателей, независимо от того, находятся ли они в покое или движутся с постоянной скоростью относительно других объектов.
— Постоянство скорости света — скорость света всегда одинаковая (примерно 300 000 км/с) и не зависит от того, как быстро движется источник света или наблюдатель.

▫️ Общая теория относительности. Расширяет идеи специальной теории относительности и объясняет гравитацию. Теория утверждает, что гравитация — это не сила, а искривление пространства-времени, вызванное массой и энергией объектов. Некоторые принципы общей теории относительности:
— Эквивалентность гравитации и ускорения — невозможно отличить действие гравитации от ускоренного движения.
— Гравитационное замедление времени — часы идут медленнее вблизи массивных объектов, например, рядом с чёрной дырой время почти останавливается. #физика #теория_относительности #оптика #опыты #эксперименты #physics #видеоуроки #научные_фильмы #свет #волны #СТО #ОТО #science

🖥 Против теории относительности и Эйнштейна // Алексей Семихатов, Владимир Сурдин / Вселенная Плюс

👨🏻‍💻 Видеолекции по теории поля и СТО [Часть 1]

👨🏻‍💻 Видеолекции по теории поля и СТО [Часть 2]

📚 3 книги по теории относительности

☀️ Физика света / The Physics of Light [2014]

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

⚙️ Миниатюрный требушет — модель средневекового осадного орудия 🪨

В основе работы требушета лежит механизм противовеса, использующий преобразование потенциальной энергии в кинетическую. Когда массивный противовес падает под действием гравитации, он приводит в движение длинный рычаг, на другом конце которого закреплена праща с метательным снарядом.

📜 Некоторые особенности физики работы требушета:

▪️ Соотношение длин плеч рычага. В классических конструкциях длина метательного плеча в 4–6 раз превышала длину плеча противовеса. Это соотношение обеспечивало оптимальный баланс между амплитудой движения противовеса и скоростью снаряда.

▪️ Размещение оси вращения. Инженеры XV века обнаружили, что небольшое смещение оси от теоретически оптимальной точки может существенно повысить эффективность машины. Это связано с изменением угловой скорости рычага во время движения — смещённая ось создаёт переменный момент силы, более эффективно передающий энергию снаряду.

▪️ Работа пращи. Во время движения рычага снаряд описывает сложную траекторию, испытывая центростремительное ускорение. В момент освобождения одного конца пращи это ускорение трансформируется в дополнительную линейную скорость снаряда.

▪️ Требушет с подвижным противовесом. В такой конструкции противовес подвешивается на шарнирах к короткому плечу рычага, что позволяет ему двигаться по собственной траектории. Это техническое решение, появившееся в XIII веке, существенно повысило эффективность машины.
#физика #механика #история #кинематика #кинетика #physics #видеоуроки #техника #science

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

⚙️ Потрясающий процесс производства промышленных шестерен

Производство промышленных шестерён включает несколько этапов: литьё, ковку и механическую обработку. Конкретный процесс зависит от типа шестерни, материала и желаемого уровня точности.

▪️ Литьё — процесс заливки расплавленного металла в форму, которая имеет конфигурацию требуемой детали. После затвердевания металла получается заготовка, близкая к конечному изделию.
▪️ Ковка — процесс, который формирует металлические сплавы в шестерни путём пластической деформации под высоким давлением в штампах.
▪️ Механическая обработка — процессы, которые вырезают профиль зубьев шестерни из заготовки для достижения требуемой геометрии, размеров и качества поверхности.

#физика #металл #горение #техника #наука #промышленность #science #сопромат #геометрия #механика

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

⚡️ ITCamp — всё, что нужно программисту

— Фреймворки, сервисы и нейросети, без которых не обойтись
— Гайды, шпаргалки и задачи по разным языкам и технологиям
— Разборы вопросов с собеседований от junior до senior

Подписывайся: @itcamp_tg

Читать полностью…

Physics.Math.Code

📚 Задачи по математике [3 книги] [1987 - 1990] В.В. Вавилов и др. Издательство: Наука

💾 Скачать книги

Справочные пособия для школьников старших классов и поступающих в вуз. Содержащие теоретические сведения и набор задач с разбором примеров. Справочники созданы на основе курса математики подготовительного отделения МГУ.

✒️ «В каждом отделе естествознания есть лишь столько настоящей науки, сколько в нем математики» (Метафизические основы естествознания, 1786 г.). — Иммануил Кант

#олимпиады #математика #геометрия #подборка_книг #алгебра #задачи #высшая_математика #математический_анализ

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

⚡️ 🔩 Анодирование деталей позволяет изменить их цвет. Эта обработка навсегда окрашивает металл без необходимости наносить краску или гальваническое покрытие.

Существует два метода анодирования:

▪️ Электрическое анодирование. Для получения единого, равномерно тонированного цвета используется постоянный ток не менее 80 вольт и от 1 до 3 ампер. Титановый кусок помещают в ванну с проводящей жидкостью, соединённой с источником питания полосой проводящего металла. Ток применяют к металлу до получения желаемого цвета. Цвет меняется в зависимости от силы тока и используемого напряжения.

▪️ Тепловое анодирование. Технология идентична электрическому анодированию, но реакция запускается не электрическим током, а теплом. Тепловое анодирование менее точно, чем электрический метод, но оно даёт более сложные результаты, например, градиенты или разноцветные эффекты. Первый шаг — полностью очистить и высушить изделие, затем происходит непосредственное обжигание металла, пока он не изменит цвет. С помощью приближения или удаления пламени можно менять цвета и создавать узоры.

Титан – современный легкий, прочный и коррозионно-стойкий конструкционный материал. Относится к переходным металлам. Он устойчив во многих средах, при комнатной температуре, на воздухе - до 550 °C. Стойкость титана обусловлена присутствием на поверхности тонкой, но плотной оксидной пленки. Толщина ее достигает 5-20 нм, что чуть больше, чем на алюминии, но на титане она гораздо прочнее. Естественная пленка на титане преимущественно состоит из рутила и анатаза. Повысить толщину и плотность естественной оксидной пленки на титане можно путем анодирования (анодного оксидирования). После анодирования можно также добиться повышения микротвердости поверхности титана, износостойкости, жаростойкости, жаропрочности, усталостной прочности и стойкости к схватыванию. После анодирования повышаются антифрикционные свойства поверхности деталей, предотвращается контактная коррозия при соприкосновении титана с алюминием, магнием, кадмиевыми и цинковыми покрытиями. Также анодная плёнка, благодаря пористой структуре, хорошо зарекомендовала себя как подслой для нанесения лакокрасочных материалов, клеев, герметиков, смазок. Высокая коррозионная стойкость в физиологической среде анодированного титана позволяет использовать данный материал для производства имплантов и протезов.
#видеоуроки #physics #физика #опыты #электродинамика #анодирование #химия #эксперименты #научные_фильмы #электролиз

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

📘 Обучение решению задач по математике [1988] Василевский

Рассматриваются методы решения задач элементарной математики. Приводятся общие и частные алгоритмы поиска решения нестандартных уравнений и неравенств, геометрических и других задач. Описывается комплексное использование различных методов при решении задач повышенной трудности. Для студентов физико-математических факультетов педагогических институтов. Может быть использовано при проведении практикумов, спецкурсов и спецсеминаров.

📕 Методы решения задач [1974] Василевский А.Б.

Книга представляет собой учебное пособие для студентов математических специальностей педагогических институтов. В ней рассматриваются общие и частные методы решения тех математических задач, которые имеются в школьных учебниках и с которыми встречаются учащиеся на олимпиадах, конкурсных экзаменах и т. д. Новыми программами для математических факультетов пединститутов предусматривается проведение на третьем и четвертом курсах практикума по решению задач. Этот практикум состоит из четырех частей (алгебра, геометрия, тригонометрия и решение конкурсных и олимпиадных задач).

📔 Устные упражнения по геометрии [1983] Василевский А.Б.

Пособие содержит устные упражнения различной степени трудности, преимущественно нестандартные как по содержанию, так и по методам решения. Их можно использовать при изучении нового материала, при повторении основных тем, а также во внеклассной работе е учащимися VI—X классов.

📗 Методы решения геометрических задач [1974] Василевский А.Б.

Учебное пособие для математических факультетов педагогических институтов и университетов по курсам «Элементарная геометрия» и «Методика преподавания математики». В пособии рассматриваются методы решения геометрических задач, заданных проекционным чертежом, использование геометрических преобразований при решении задач на доказательство и построение, алгебраический метод решения конструктивных задач, роль развертки как средства анализа и расчета. Приводятся задачи на вычисление и построение, условия которых выражены приближенными величинами. Излагаются способы конструирования разверток пространственных фигур и их моделей.
Пособие может быть использовано также учителями средней школы.

#математика #подборка_книг #math #высшая_математика #математический_анализ #алгебра #calculus

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

⚡️ Обучающий фильм Электрический ток [СССР]

Фильм поделён на три части:
1. Условия возникновения электрического тока (начинается с 00:21).
2. Источники электрического тока (03:22).
3. Электрический ток в металлах и электролитах (08:53).

Электрический ток — упорядоченное некомпенсированное движение свободных электрически заряженных частиц под воздействием электрического поля. Такими частицами могут являться: в проводниках — электроны, в электролитах — ионы (катионы и анионы), в газах — ионы и электроны, в вакууме при определенных условиях — электроны, в полупроводниках — электроны и дырки (электронно-дырочная проводимость).

При изучении электрического тока, было обнаружено множество его свойств, которые позволили найти ему практическое применение в различных областях человеческой деятельности, и даже создать новые области, которые без существования электрического тока были бы невозможны.

Некоторые этапы открытия электрического тока:
▪️ 1600 год — итальянский учёный Гальвани обнаружил, что две металлические пластины, помещённые в раствор соли, начинают двигаться друг к другу. Это явление было названо «гальваническим эффектом».
▪️ 1775 год — Алессандро Вольта создал первый электрический элемент («вольтов столб»), который состоял из двух металлических пластин, разделённых изолятором. При соединении пластин с помощью ключа учёный обнаружил, что между ними возникает электрический ток.
▪️ 1820 год — Майкл Фарадей открыл, что при пропускании электрического тока через проводник вокруг него образуется магнитное поле. Это открытие позволило разработать новые способы передачи энергии на большие расстояния, такие как телеграф и телефон.

Некоторые свойства электрического тока:
▪️ Тепловое действие — ток нагревает проводники. Это используется в электрических обогревателях и утюгах.
▪️ Магнитное действие — ток образует магнитное поле вокруг проводника, по которому течёт. Это свойство применяется в электродвигателях и генераторах.
▪️ Химическое действие — ток вызывает химические реакции, например, в процессе получения металлов из руд (электролиз).

Некоторые мифы об электрическом токе:
▪️ Чем больше напряжение, тем больше опасность — на самом деле опасна сила тока, а не напряжение.
▪️ Вода проводит электричество — чистая вода почти полностью изолятор, но грязная или набранная из колодца вода содержит множество растворённых веществ, которые проводят электричество.
▪️ Резиновые перчатки и обувь не проводят электричество — только профессиональные диэлектрические боты и перчатки, испытанные на заводе высоким напряжением, могут служить защитой от электрического тока.
#физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки #схемотехника #радиофизика

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

⚡️ Фигуры Лихтенберга — картины распределения искровых каналов, которые образуются на поверхности твёрдого диэлектрика при скользящем искровом разряде. Простым языком, это линии, похожие на молнии или ветви деревьев. Они появляются на многих естественных поверхностях, не пропускающих электричество — от древесины до кожи человека.

Фигуры Лихтенберга возникают на/в твёрдых телах, жидкостях и газах или внутри них во время электрического пробоя. Это природные явления, обладающие фрактальными свойствами. Фигуры Лихтенберга названы в честь немецкого физика Георга Кристофа Лихтенберга, который первым их открыл и изучил. Когда их впервые обнаружили, считалось, что их характерные формы могут помочь раскрыть природу положительных и отрицательных электрических «жидкостей».

В 1777 году Лихтенберг сконструировал большой электрофор для получения высокого напряжения статического электричества с помощью индукции. После разряда высоковольтной точки на поверхность изолятора он записал полученные радиальные узоры, посыпав поверхность различными порошкообразными материалами. Затем, прижав к этим узорам чистые листы бумаги, Лихтенберг смог перенести и записать эти изображения, тем самым открыв основной принцип современной ксерографии. Это открытие также стало предвестником современной науки физики плазмы. Хотя Лихтенберг изучал только двумерные (2D) фигуры, современные исследователи в области высоких напряжений изучают 2D и 3D фигуры (электрические деревья) на изолирующих материалах и внутри них.
#физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки #схемотехника #радиофизика

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

🧲 Магнит и медь. Закон Фарадея. Магнитное демпфирование

Многие видели опыт с постоянным магнитом, который как бы застревает внутри толстостенной медной трубки. Экспериментатор помещает постоянный магнит в виде небольшого шарика в медную трубу, которую он держит вертикально. Вопреки ожиданиям, шарик не падает сквозь трубу с ускорением свободного падения, а движется внутри трубы гораздо медленнее. Итак, в опыте мы наблюдаем, как постоянный магнит движется внутри полой медной трубы с постоянной скоростью. Зафиксируем произвольную точку в теле медной трубки и мысленно проведем поперечное сечение. Через данное сечение медной трубы проходит магнитный поток, создаваемый постоянным магнитом. Из-за того, что магнит движется вдоль трубы, в сечении проводника возникает переменный магнитный поток, то ли нарастающий, то ли убывающий в зависимости от того, приближается или отдаляется магнит от точки, где мы мысленно провели сечение. Переменный магнитный поток, согласно уравнениям Максвелла, порождает вихревое электрическое поле, вообще говоря, во всём пространстве. Однако, только там, где есть проводник, это электрическое поле приводит в движение свободные заряды, находящиеся в проводнике — возникает круговой электрический ток, который создает уже своё собственное магнитное поле и взаимодействует с магнитным полем движущегося постоянного магнита. Проще говоря, круговой электрический ток создает магнитное поле того же знака, что и постоянный магнит, и на магнит действует некая диссипативная сила, а если конкретно — сила трения. Читатель может справедливо задать вопрос: «Трение чего обо что?» Трение возникает между магнитным полем диполя и проводником. Да, это трение не механическое. Вернее сказать, тела не соприкасаются. [Подробные расчеты]

Быстрое изменение магнитного потока в катушках индуктивности или массивных деталях магнитопровода способствуют возникновению существенных по величине вихревых токов. Эти вихревые токи создают индуцированное магнитное поле, направленное так, чтобы поддержать прежнее состояние системы, то есть подавить внешнее воздействие, то есть уменьшить возрастающий поток.

В итоге в медном цилиндре создаются такие токи, которые порождают поле направленное против поля быстро приближающегося магнита. Это приводит к демпфированию магнита и выделению тепла внутри проводника (массивного куска меди). Количество энергии, переданной проводнику в виде тепла, равно изменению кинетической энергии, теряемой магнитом — чем больше потеря кинетической энергии магнита (произведение его массы и скорости), тем больше тепла накопление в проводнике и тем сильнее демпфирующий эффект. Вихревые токи, индуцированные в проводниках, намного сильнее, когда температура приближается к криогенным уровням. #gif #физика #physics #опыты #эксперименты

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

🧪 Опыты с лазером и жидкостями различной плотности могут демонстрировать преломление света на границе сред с разной оптической плотностью. Это явление, при котором луч света меняет направление при переходе из одной среды в другую, зависит от разницы показателей преломления.

Примеры опытов:

▪️Опыт с аквариумом и сахаром. Дно аквариума покрывают слоем кубиков рафинада, затем осторожно вливают воду, чтобы жидкость почти не перемешивалась. Аквариум оставляют в тихом месте на сутки: за это время сахар полностью расходится, причём концентрация молекул у дна оказывается выше, чем ближе к поверхности.
▪️Опыт с раствором поваренной соли и водой. В кювету, на дне которой лежит зеркало, сначала заливают раствор поваренной соли, затем медленно и осторожно, по лезвию ножа, наливают поверх солевого раствора воду. Если сделать это осторожно, то граница раздела будет чёткой, а смешивание жидкостей минимальным.
▪️Опыт с неравномерно нагретой водой. Раствор воды снизу охлаждают кубиками льда, а вверху прогревают лампой накаливания. Лазерный луч отклоняется в сторону менее нагретой жидкости.
▪️Опыт с неравномерно нагретой водой при наличии поверхностного нефтяного слоя. В том же растворе воды, который снизу охлаждают, сверху прогревают лампой, есть слой сырой нефти с показателем преломления 1,49. Лазерный луч не отклоняется в сторону менее нагретой жидкости из-за большой оптической плотности и коэффициента светопоглощения нефти.

#физика #оптика #опыты #physics #эксперименты #наука #science #видеоуроки

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

📕 Курс физики для довузовской подготовки [2008] Горбунов

В пособии изложены все разделы курса элементарной физики, которые тесно связаны с основными понятиями, используемыми при решении задач. Пособие полезно для подготовки к ЕГЭ, выпускным и вступительным экзаменам. Оно поможет старшеклассникам прочно усвоить все основные понятия физики и успешно сдать экзамены.

Цель издания: помочь старшеклассникам прочно усвоить все основные понятия физики и успешно сдать ЕГЭ, выпускные и вступительные экзамены.

#физика #подборка_книг #задачи #наука #science #physics

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

☕️ Доброго утра, друзья! Предлагаю вашему внимание размяться на геометрической задачке про квадрат. Условие очень простое: всё что нам дано — изображено на рисунке. Нужно найти площадь квадрата. Как это сделать ? #задачи #разбор_задач #олимпиады #геометрия #математика #math

🟦 Подсказка и ответ

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

⚙️ Крутящий момент и мощность двигателя [ ЦентрНаучФильм ] Фильм рассказывает о таких характеристиках двигателей как крутящий момент и мощность.

▪️ Крутящий момент — это параметр, который определяет способность двигателя вращать коленчатый вал. Простыми словами, это тяга, которую выдаёт мотор. Крутящий момент измеряется в ньютон-метрах (Н·м) — единицах, характеризующих силу, с которой происходит воздействие на механизм. Момент силы (иногда его называют ещё вращающим или крутящим моментом) — физическая величина, которая определяет вращательное воздействие силы на тело вокруг определённой точки или оси. Момент силы представляет собой произведение силы на расстояние от точки приложения силы до оси вращения.

▪️ Крутящий момент — величина не постоянная. Он изменяется вместе с количеством поступающей в цилиндр смеси и оборотами двигателя.
Некоторые факторы, от которых зависит крутящий момент двигателя:
1. Количество и объём цилиндров. Чем больше радиус кривошипа коленвала и площадь поршня, тем выше величина крутящего момента.
2. Система питания и конструкция камеры сгорания. Важна эффективность сгорания топлива.
3. Турбонаддув. Если мотор оснащён турбокомпрессором, крутящий момент будет выше.

▪️ В физике и механике крутящий момент является вращательным аналогом линейной силы. Его также называют моментом силы (сокращенно момент М). Он описывает скорость изменения углового момента, который передается изолированному телу. Концепция возникла в результате исследований Архимеда использования рычагов, что нашло отражение в его знаменитой цитате: "Дайте мне рычаг и место для опоры, и я сдвину Землю". Точно так же, как линейная сила — это толчок или натяжение, приложенное к телу, крутящий момент можно рассматривать как поворот, приложенный к объекту относительно выбранной точки. Крутящий момент определяется как произведение величины перпендикулярной составляющей силы и расстояния от линии действия силы от точки, вокруг которой она определяется. Закон сохранения энергии также может использоваться для понимания крутящего момента.

▪️ Сила, приложенная перпендикулярно к рычагу, умноженная на расстояние от точки опоры рычага (длина плеча рычага) до точки приложения силы, представляет собой крутящий момент. Например, сила в три ньютона, приложенная на расстоянии двух метров от точки опоры, создает такой же крутящий момент, как и сила в один ньютон, приложенная на расстоянии шести метров от точки опоры. #физика #видеоуроки #факты #задачи #опыты #эксперименты #механика #сопромат #кинематика #science

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

🖥 Физика вокруг нас 👻

▪️ 1. Мука не проваливается сквозь сито из-за сцепления частиц. Это связано с неправильной формой частиц и их влажностью. Сыпучесть — физико-механическая характеристика вещества в порошкообразном или гранулированном состоянии, которая определяет его способность проходить через отверстия, сыпаться (течь) под воздействием силы тяжести. Основным фактором, влияющим на сыпучесть вещества, является его влажность, реже — наэлектризованность и намагниченность частиц вещества.

▪️ 2. Инертность передачи взаимодействия другим телам при очень быстром воздействии (ударе). При резком ударе по линейке создаётся кратковременное усилие, которое пытается поднять газету. Однако из-за атмосферного давления сверху газета не может подняться достаточно быстро, чтобы порваться. Давление воздуха как бы «приклеивает» газету к столу. F = p⋅S

▪️ 3. Неньютоновская жидкость : крахмал + вода. Важно соблюдать пропорцию 1:1. Это жидкость с динамической вязкостью. В спокойном состоянии это жидкая масса, но чем большее усилие к ней прикладывать, тем более твёрдой она становится. Например, если скатать из раствора шарик и интенсивно работать пальцами, он будет формироваться и становиться твёрдым, но стоит разжать ладонь и перестать воздействовать на него, как он растекается лужицей.

▪️ 4. С точки зрения физики, эволюция создала форму яйца адаптивной к окружающей среде. В итоге геометрия яйца определяется максимизацией прочности. Внешние давление распределяется равномерно, предотвращая разрушение при нагрузке.

▪️ 5. Оптическая иллюзия зависания самолёта на одном месте связана с удаленностью от наблюдателя и уменьшением скорости при сильном встречном ветре. Чем дальше находится объект, тем медленнее он кажется движущимся. Этот принцип объясняет, почему при наблюдении самолета с земли или из транспорта кажется, что он висит в воздухе. Если самолет летит прямо на наблюдателя или от него, видимое смещение минимально, и впечатление неподвижности усиливается.

▪️ 6. Ламинарное течение (от лат. lamina — «пластинка») — течение жидкости или газа, при котором траектории частиц среды практически параллельны направлению основного потока. При этом различные слои жидкости или газа движутся с разными скоростями, но соседние слои не перемешиваются. Ламинарное течение наблюдается при небольших скоростях движения жидкости или газа, а также при медленном обтекании жидкостью или газом тел малых размеров.

#физика #видеоуроки #факты #задачи #опыты #эксперименты #механика #сопромат #кинематика #science

💡 Physics.Math.Code // @physics_lib

Читать полностью…
Подписаться на канал