physics_lib | Неотсортированное

Telegram-канал physics_lib - Physics.Math.Code

135519

VK: vk.com/physics_math Чат инженеров: @math_code Учебные фильмы: @maths_lib Репетитор IT mentor: @mentor_it YouTube: youtube.com/c/PhysicsMathCode Обратная связь: @physicist_i

Подписаться на канал

Physics.Math.Code

Скатывание цилиндров по наклонной плоскости. Данный опыт показывает, как существенно вращательное движение зависит от того, как приложены к телу силы.

#физика #видеоуроки #олимпиады #problems #задачи #опыты #эксперименты #механика #сопромат #кинематика #science

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

⚙️ Бесконечный крутящий момент — как объяснили сложные вещи в ЦентрНаучФильм

#физика #видеоуроки #факты #задачи #опыты #эксперименты #механика #сопромат #кинематика #science

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

⛓️‍💥 Ломание палки на бумажных кольцах ⭕️

Суть эксперимента: взять три бумажных кольца, сцепленных друг с другом, разместить их параллельно. В крайние кольца положить деревянную рейку и нанести сильный удар стальным прутом. В результате дерево разломится, а бумажные кольца, гораздо менее прочные, останутся полностью целы.

Объяснение: во время быстрого удара сила воздействия не успевает передаться кольцам из-за инертности палки, поэтому кольца остаются целы.

#физика #видеоуроки #олимпиады #problems #задачи #опыты #эксперименты #механика #сопромат #кинематика #science

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

💥 Лазерная резка — технология резки и раскроя материалов, использующая лазер высокой мощности и обычно применяемая на промышленных производственных линиях. Сфокусированный лазерный луч, обычно управляемый компьютером, обеспечивает высокую концентрацию энергии и позволяет разрезать практически любые материалы независимо от их теплофизических свойств. В процессе резки, под воздействием лазерного луча материал разрезаемого участка плавится, возгорается, испаряется или выдувается струей газа. При этом можно получить узкие резы с минимальной зоной термического влияния. Лазерная резка отличается отсутствием механического воздействия на обрабатываемый материал, возникают минимальные деформации, как временные в процессе резки, так и остаточные после полного остывания. Вследствие этого лазерную резку, даже легкодеформируемых и нежестких заготовок и деталей, можно осуществлять с высокой степенью точности. Благодаря большой мощности лазерного излучения обеспечивается высокая производительность процесса в сочетании с высоким качеством поверхностей реза. Легкое и сравнительно простое управление лазерным излучением позволяет осуществлять лазерную резку по сложному контуру плоских и объемных деталей и заготовок с высокой степенью автоматизации процесса.

Для лазерной резки металлов применяют технологические установки на основе твердотельных, волоконных лазеров и газовых CO2-лазеров, работающих как в непрерывном, так и в импульсно-периодическом режимах излучения. Промышленное применение газо-лазерной резки с каждым годом увеличивается, но этот процесс не может полностью заменить традиционные способы разделения металлов. В сопоставлении со многими из применяемых на производстве установок стоимость лазерного оборудования для резки ещё достаточно высока, хотя в последнее время наметилась тенденция к её снижению. В связи с этим процесс лазерной резки становится эффективным только при условии обоснованного и разумного выбора области применения, когда использование традиционных способов трудоемко или вообще невозможно.

Лучше всего обрабатываются металлы с низкой теплопроводностью, так как в них энергия лазера концентрируется в меньшем объеме металла, и наоборот, при лазерной резке металлов с высокой теплопроводностью может образоваться грат. #лазер #техника #science #физика #physics #производство

💡 Physics.Math.Code
// @physics_lib

Читать полностью…

Physics.Math.Code

📙 Венгерские математические олимпиады [1976] Кюршак Й., Хайош Д.

Из предисловия: В книге собраны задачи, предлагавшиеся на знаменитых Венгерских математических олимпиадах с 1894 по 1974 годы. К составлению задач привлекались лучшие математические силы страны. Задачи отличаются оригинальностью, неожиданностью постановки, глубиной и, как правило, допускают простые и ясные решения.

Эта книга заинтересует самые разные категории читателей. Старшеклассник встретит здесь немало интересных задач и сможет, хотя и заочно, померятся силами со своими сверстниками прошлых лет, многие из которых стали известными учеными.

Ветеран олимпиад сравнит эти задачи с теми, которые были «в его время», и с удовольствием отметит неожиданные повороты в решениях или занимательное оформление условий.

Преподаватель математики найдет разнообразный материал для классных и внеклассных занятий. Педагог-исследователь сможет проследить за эволюцией идей в задачах, отражающей сменяющиеся веяния как в самой математике, так и в ее преподавании. #math #математика #задачи #разбор_задач #головоломки #физика #геометрия #олимпиады

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

⚡️ Физические основы радиопередачи [1989] Киностудия Леннаучфильм

Плодотворной научной почвой для изобретения беспроволочного телеграфа А.С. Поповым были работы великих физиков с мировым именем. История радио и радиовещания. Изобретение электронных ламп и многое другое. Физические основы радиопередачи заключаются в использовании радиоволн — электромагнитных волн, которые свободно распространяются в пространстве. Информация, передаваемая по радиоканалу, кодируется в параметрах несущей волны: амплитуде, частоте или фазе.

Этапы передачи сигнала:
▪️ Формирование несущего сигнала в радиопередатчике. Это высокочастотные колебания определённой частоты.
▪️ Наложение полезного сигнала (звуков, изображений и т. д.) на несущий сигнал — модуляция.
▪️ Излучение модулированного сигнала антенной в пространство в виде радиоволн.
▪️ Приём на приёмной стороне. Радиоволны наводят модулированный сигнал в приёмной антенне, он поступает в радиоприёмник.
▪️ Выделение сигнала с нужной несущей частотой с помощью системы фильтров, затем — выделение полезного сигнала детектором.

Некоторые виды модуляции:
▪️ Амплитудная — изменение амплитуды несущего сигнала в соответствии с полезным сигналом.
▪️ Частотная — изменение частоты несущего сигнала.
▪️ Фазовая — изменение фазы несущего сигнала.

#физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки #схемотехника #радиофизика

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

👨‍🎓Для студентов и школьников 20 июня устроят день образования на бесплатном фестивале Т-Двор в Питере.

В Санкт-Петербурге на фестивале Т-Двор эксперты поделятся с учениками и их родителями трендами в обучении и дадут рекомендации по выбору будущей карьеры.

Программа дня начнется еще утром с кофе-рейва под DJ-сет и тренировки по йоге. После этого стартуют воркшопы, дискуссии и разбор кейсов от экспертов по темам непрерывного обучения, профессий будущей и навыков новой эры.

На фестиваль можно попасть бесплатно по предварительной регистрации или подключиться к трансляции онлайн.

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

📚 Сборник задач по математике для втузов [1986-1990] Ефимов А.В.
Издательство: Наука


💾 Скачать книги

📕 Книга 1. Линейная алгебра и основы математического анализа.
📘 Книга 2. Специальные разделы математического анализа.
📙 Книга 3. Теория вероятностей и математическая статистика.
📗 Книга 4. Методы оптимизации. Уравнения в частных производных. Интегральные уравнения.


«Высшее назначение математики — находить порядок в хаосе, который нас окружает» (Норберт Винер).

«Всякая хорошо решённая математическая задача доставляет умственное наслаждение, а сосредоточенные размышления успокаивают сердце, делая его созвучным Вселенной» (Г. Гессе).

#математика #подборка_книг #math #высшая_математика #математический_анализ #алгебра #calculus

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

#️⃣ Обычный поиск VS Квантовый поиск

В контексте квантовых вычислений квантовый поиск по графу — это квантовый алгоритм для поиска помеченного узла в графе. Концепция квантового блуждания основана на классических случайных блужданиях, в которых участник случайным образом перемещается по графу или решётке. В классическом случайном блуждании положение участника можно описать с помощью распределения вероятностей по различным узлам графа. В квантовом блуждании, с другой стороны, участник представлен квантовым состоянием, которое может находиться в суперпозиции нескольких местоположений одновременно.

Поисковые алгоритмы, основанные на квантовых прогулках, могут найти применение в различных областях, включая оптимизацию, машинное обучение, криптографию и сетевой анализ. Эффективность и вероятность успеха квантового поиска сильно зависят от структуры пространства поиска. В целом, алгоритмы квантового поиска обеспечивают асимптотическое квадратичное ускорение, аналогичное алгоритму Гровера. Одна из первых работ по применению квантового блуждания к задачам поиска была предложена Нилом Шенви, Джулией Кемпе и К. Биргиттой Уэйли. #математика #math #геометрия #графика #наука #алгоритмы #дискретная_математика #графы #задачи #программирование

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

Машинное обучение не начинается с нейросетей. Оно начинается с линейной алгебры. С вероятностных моделей. С тензоров, временных рядов и байесовских подходов, которые сначала не работают «на практике», зато потом внезапно объясняют всё.

Если вы когда-нибудь читали курс «Математические основы ML», вели семинары по тензорным вычислениям или строили с нуля программу, где студенты наконец понимают, зачем им теория вероятностей, есть повод остановиться на минуту.

Открылся приём заявок на Yandex ML Prize 2025, премию для преподавателей и руководителей ML-программ. В одной из номинаций те, кто преподаёт математику как основу для машинного обучения и держит фундамент.

Победители получат денежные призы и гранты на Yandex Cloud: для запуска курсов, проведения исследований, хакатонов, студенческих проектов. Заявки принимают до 22 июня.

Если вы из таких, смело подавайтесь. Если знаете таких – расскажите им.

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

📕 N-угольники [1973] Бахман, Шмидт

В этой книге на вполне элементарном материале, начинающемся с простейших геометрических истин (середины сторон произвольного четырехугольника являются вершинами параллелограмма и т. д.), развита весьма изящная теория, устанавливающая зачастую совершенно неожиданные связи между геометрией и важными концепциями и понятиями современной алгебры. Большое достоинство книги — сопровождающие изложение задачи, которые позволяют читателю все время контролировать степень овладения материалом.

Книга рассчитана на любителей математики самых разных категорий, начиная от старшеклассников, интересующихся этой наукой (например, учащихся школ с математической специализацией).

#математика #math #геометрия #графика #наука #дискретная_математика #графы #физика #physics

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

📢 Регистрация на Летнюю школу имени И. Е. Тамма продлена до 31 мая!

Что тебя ждёт:

▪️обсуждение последних научных открытий и достижений;
▪️лекции от ведущих учёных;
▪️участие в образовательных интенсивах и лабораторных практикумах с использованием современного оборудования.

Если ты студент выпускного курса технической специальности и готов окунуться в мир настоящей науки, не упусти этот шанс! Переходи по ссылке и регистрируйся:

🗓 Успей зарегистрироваться до 31 мая: https://contest.sarov.msu.ru/?utm_source=tg&utm_campaign=posev

Реклама. Частное учреждение «Центр коммуникаций». ИНН 9705152344. erid: 2VtzquzkLnh

Читать полностью…

Physics.Math.Code

📘 CUDA Fortran for Scientists and Engineers [2011] Greg Ruetsch, Massimiliano Fatica

📗 CUDA Fortran для инженеров и научных работников [2014] Грегори Рутш, Массимилиано Фатика


💾 Скачать книгу

В этом документе используются компиляторы PGI 11.x, которые можно получить по адресу pgroup.com. Хотя примеры могут быть скомпилированы и запущены в любой поддерживаемой операционной системе в различных средах разработки, примеры в этом документе скомпилированы из командной строки, как это было бы сделано в Linux или Mac OS X.

#математика #CUDA #GPU #графика #наука #Fortran #моделирование #физика #physics #инженерия #параллельные_вычисления

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

📔 Сборник практических задач по математике [1971] Сорокин

💾 Скачать книгу

👩‍💻 «Математика — это язык, на котором написана книга природы» (Г. Галилей).


#математика #math #задачи #разборы_задач #алгебра #геометрия

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

👩‍💻Самая большая в мире вакуумная камера. В этой камере проводили эксперимент, который подтвердил теорию Галилея относительно ускорения свободного падения. Суть опыта: с одинаковой высоты в один момент времени отпустили шар для боулинга и несколько перьев. В замедленной съёмке показали, что оба объекта ускоряются одинаково и достигают плоскости Земли одновременно. Это произошло потому, что на них не действует сопротивление воздуха, так как объекты находились в вакууме.

Space Power Facility (сокр. SPF) — крупнейшая в мире термальная вакуумная камера, созданная НАСА в 1969 году. Расположена на станции Плам-Брук, неподалёку от Сандаски. Станция Плам-Брук, в свою очередь, является частью Исследовательского центра Гленна, расположенного в Кливленде. Изначально предназначалась для ядерно-электрических испытаний в условиях вакуума, однако испытания были отменены, а камера законсервирована. В дальнейшем камера использовалась для проведения испытаний двигательных установок космических аппаратов и их систем. Кроме того, в данной камере проводились испытания работоспособности защитных систем приземления в условиях, приближенных к марсианским, для марсоходов Mars Pathfinder и проектах серии Mars Exploration Rover.

Размеры SPF составляют более 30 метров в диаметре и 40 метров - в высоту. По своему устройству SPF представляет собой огромный алюминиевый контейнер, заключённый в бетонный купол. Алюминиевый контейнер состоит из плотных рядов пластин из алюминиевого сплава Type 5083, подогнанных друг к другу таким образом, чтобы не пропускать воздух. #физика #механика #опыты #physics #эксперименты #наука #science #видеоуроки #кинематика #моделирование

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

⚙️ Крутящий момент и мощность двигателя [ ЦентрНаучФильм ] Фильм рассказывает о таких характеристиках двигателей как крутящий момент и мощность.

▪️ Крутящий момент — это параметр, который определяет способность двигателя вращать коленчатый вал. Простыми словами, это тяга, которую выдаёт мотор. Крутящий момент измеряется в ньютон-метрах (Н·м) — единицах, характеризующих силу, с которой происходит воздействие на механизм. Момент силы (иногда его называют ещё вращающим или крутящим моментом) — физическая величина, которая определяет вращательное воздействие силы на тело вокруг определённой точки или оси. Момент силы представляет собой произведение силы на расстояние от точки приложения силы до оси вращения.

▪️ Крутящий момент — величина не постоянная. Он изменяется вместе с количеством поступающей в цилиндр смеси и оборотами двигателя.
Некоторые факторы, от которых зависит крутящий момент двигателя:
1. Количество и объём цилиндров. Чем больше радиус кривошипа коленвала и площадь поршня, тем выше величина крутящего момента.
2. Система питания и конструкция камеры сгорания. Важна эффективность сгорания топлива.
3. Турбонаддув. Если мотор оснащён турбокомпрессором, крутящий момент будет выше.

▪️ В физике и механике крутящий момент является вращательным аналогом линейной силы. Его также называют моментом силы (сокращенно момент М). Он описывает скорость изменения углового момента, который передается изолированному телу. Концепция возникла в результате исследований Архимеда использования рычагов, что нашло отражение в его знаменитой цитате: "Дайте мне рычаг и место для опоры, и я сдвину Землю". Точно так же, как линейная сила — это толчок или натяжение, приложенное к телу, крутящий момент можно рассматривать как поворот, приложенный к объекту относительно выбранной точки. Крутящий момент определяется как произведение величины перпендикулярной составляющей силы и расстояния от линии действия силы от точки, вокруг которой она определяется. Закон сохранения энергии также может использоваться для понимания крутящего момента.

▪️ Сила, приложенная перпендикулярно к рычагу, умноженная на расстояние от точки опоры рычага (длина плеча рычага) до точки приложения силы, представляет собой крутящий момент. Например, сила в три ньютона, приложенная на расстоянии двух метров от точки опоры, создает такой же крутящий момент, как и сила в один ньютон, приложенная на расстоянии шести метров от точки опоры. #физика #видеоуроки #факты #задачи #опыты #эксперименты #механика #сопромат #кинематика #science

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

🖥 Физика вокруг нас 👻

▪️ 1. Мука не проваливается сквозь сито из-за сцепления частиц. Это связано с неправильной формой частиц и их влажностью. Сыпучесть — физико-механическая характеристика вещества в порошкообразном или гранулированном состоянии, которая определяет его способность проходить через отверстия, сыпаться (течь) под воздействием силы тяжести. Основным фактором, влияющим на сыпучесть вещества, является его влажность, реже — наэлектризованность и намагниченность частиц вещества.

▪️ 2. Инертность передачи взаимодействия другим телам при очень быстром воздействии (ударе). При резком ударе по линейке создаётся кратковременное усилие, которое пытается поднять газету. Однако из-за атмосферного давления сверху газета не может подняться достаточно быстро, чтобы порваться. Давление воздуха как бы «приклеивает» газету к столу. F = p⋅S

▪️ 3. Неньютоновская жидкость : крахмал + вода. Важно соблюдать пропорцию 1:1. Это жидкость с динамической вязкостью. В спокойном состоянии это жидкая масса, но чем большее усилие к ней прикладывать, тем более твёрдой она становится. Например, если скатать из раствора шарик и интенсивно работать пальцами, он будет формироваться и становиться твёрдым, но стоит разжать ладонь и перестать воздействовать на него, как он растекается лужицей.

▪️ 4. С точки зрения физики, эволюция создала форму яйца адаптивной к окружающей среде. В итоге геометрия яйца определяется максимизацией прочности. Внешние давление распределяется равномерно, предотвращая разрушение при нагрузке.

▪️ 5. Оптическая иллюзия зависания самолёта на одном месте связана с удаленностью от наблюдателя и уменьшением скорости при сильном встречном ветре. Чем дальше находится объект, тем медленнее он кажется движущимся. Этот принцип объясняет, почему при наблюдении самолета с земли или из транспорта кажется, что он висит в воздухе. Если самолет летит прямо на наблюдателя или от него, видимое смещение минимально, и впечатление неподвижности усиливается.

▪️ 6. Ламинарное течение (от лат. lamina — «пластинка») — течение жидкости или газа, при котором траектории частиц среды практически параллельны направлению основного потока. При этом различные слои жидкости или газа движутся с разными скоростями, но соседние слои не перемешиваются. Ламинарное течение наблюдается при небольших скоростях движения жидкости или газа, а также при медленном обтекании жидкостью или газом тел малых размеров.

#физика #видеоуроки #факты #задачи #опыты #эксперименты #механика #сопромат #кинематика #science

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

🌐 Математическая загадка: сфера и 5 точек на поверхности

Если на поверхности сферы есть 5 точек, то существует замкнутая полусфера, содержащая по крайней мере 4 из них.

Задача: На сфере отмечено пять точек, никакие три из которых не лежат на большой окружности (большая окружность – это окружность, по которой пересекаются сфера и плоскость, проходящая через её центр). Две большие окружности, не проходящие через отмеченные точки, называются эквивалентными, если одну из них с помощью непрерывнвого перемещения по сфере можно перевести в другую так, что в процессе перемещения окружность не проходит через отмеченные точки.
а) Сколько можно нарисовать окружностей, не проходящих через отмеченные точки и не эквивалентных друг другу?
б) Та же задача для n отмеченных точек.

Решение:
а) Перейдём к двойственным объектам: каждой окружности соответствует такая пара противоположных точек сферы, что соединяющий их диаметр перпендикулярен этой окружности; наоборот, каждой точке соответствует большая окружность. Тогда задача сводится к двойственной: точки считаются эквивалентными, если можно одну перевести в другую, не задевая пяти данных больших окружностей (никакие три из которых не пересекаются в одной точке). Очевидно, точку можно перемещать в пределах области, на которые большие окружности делят сферу. Таким образом, число классов эквивалентности в два раза меньше числа частей, на которые большие окружности делят сферу (противоположным частям соответствует один класс, так как исходной большой окружности в двойственной задаче соответствуют две диаметрально противоположные точки).
Учтем, что n наших больших окружностей делят сферу на n² – n + 2 части. В частности, пять окружностей разобьют сферу на 22 части. А ответ, как показано выше, в два раза меньше.
б) см. а)

#геометрия #видеоуроки #олимпиады #problems #задачи #опыты #эксперименты #math

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

💨 Пульсирующий воздушно-реактивный двигатель (ПуВРД) — вариант воздушно-реактивного двигателя. Работает в режиме пульсации: тяга развивается не непрерывно, а в виде серии импульсов, следующих друг за другом с частотой от десятков герц для крупных двигателей до 250 Гц — для малых двигателей, предназначенных для авиамоделей.

🔥💨 Парореактивная pop-pop лодочка

Устройство ПуВРД: цилиндрическая камера сгорания с длинным цилиндрическим соплом меньшего диаметра. Передняя часть камеры соединена со входным диффузором, через который воздух поступает в камеру. Между диффузором и камерой сгорания установлен воздушный клапан, работающий под воздействием разницы давлений в камере и на выходе диффузора.

Первые патенты на ПуВРД были получены независимо друг от друга в 1860-х годах Шарлем де Луврье (Франция) и Николаем Афанасьевичем Телешовым (Россия). Известным летательным аппаратом с ПуВРД (Argus As-014) является немецкий самолёт-снаряд «Фау-1», состоявший на вооружении армии Германии во время Второй мировой войны. #физика #термодинамика #мкт #механика #теплота #опыты #эксперименты #physics

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

📙 Венгерские математические олимпиады [1976] Кюршак Й., Хайош Д.

💾 Скачать книгу

В издании собраны задачи, которые предлагались на Венгерских математических олимпиадах с 1894 по 1974 год. К составлению задач привлекались лучшие математические силы страны. Книга рассчитана на учащихся старших классов, абитуриентов, студентов и всех, кто серьёзно увлечён математикой.

Йожеф Кюршак — венгерский математик, основатель теории оценок.
Дьёрдь Ха́йош — венгерский математик и популяризатор. Член Венгерской академии наук.
#math #математика #задачи #разбор_задач #головоломки #физика #геометрия #олимпиады

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

Красота параметрических кривых

Параметрическое представление — используемая в математическом анализе разновидность представления переменных, когда их зависимость выражается через дополнительную величину — параметр. Параметризация – метод представления кривой, поверхности или объекта в пространстве с помощью одной или нескольких переменных, называемых параметрами. Параметризация позволяет описывать траекторию объекта на кривой или поверхности, изменяя значение параметра. Это гибкий подход для изучения и анализа форм и движений объектов.

#математика #mathematics #animation #math #геометрия #geometry #gif

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

📚 Сборник задач по математике для втузов [1986-1990] Ефимов А.В.
Издательство: Наука


Второе и четвертое издание известного сборника задач по математике для втузов, охватывающего множество разделов высшей математики.

📕 Книга 1. Линейная алгебра и основы математического анализа.
Часть 1. Содержит задачи по линейной алгебре, аналитической геометрии, а также общей алгебре.

📘 Книга 2. Специальные разделы математического анализа.
Часть 2. Содержит задачи по основам математического анализа, а также дифференциальному и интегральному исчислениям функций одной и нескольких переменных, дифференциальным уравнениям и кратным интегралам.

📙 Книга 3. Теория вероятностей и математическая статистика.
Часть 3. Содержит задачи по специальным разделам математического анализа, которые в различных наборах и объемах изучаются в технических вузах и университетах. Сюда включены такие разделы, как векторный анализ, ряды и их применение, элементы теории функций комплексной переменной, операционное исчисление, интегральные уравнения, уравнения в частных производных, а также методы оптимизации.

📗 Книга 4. Методы оптимизации. Уравнения в частных производных. Интегральные уравнения.
Часть 4. Содержит задачи по специальным курсам математики: теории вероятностей и математической статистике. Во всех разделах приводятся необходимые теоретические сведения. Все задачи снабжены ответами, а наиболее сложные - решениями.

Краткие теоретические сведения, снабженные большим количеством разобранных примеров, позволяют использовать сборник для всех видов обучения.
Для студентов высших технических учебных заведений. Под редакцией Ефимова А.В., Поспелова А.С.
#математика #подборка_книг #math #высшая_математика #математический_анализ #алгебра #calculus

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

📈📉Опыты по физике: Плавление, кристаллизация, испарение, конденсация

Плавление и испарение — признаки изменения агрегатного состояния кристаллического вещества. Эти процессы связаны с переходом вещества из твёрдого состояния в жидкое (плавление) или из жидкого состояния в газообразное (испарение).

▪️ Плавление — переход кристаллического вещества из твёрдого состояния в жидкое. Плавление происходит при определённой температуре — температуре плавления. Каждое вещество имеет свою температуру плавления. Сопровождается поглощением энергии, так как к веществу необходимо подводить теплоту. Внутренняя энергия вещества увеличивается. Температура вещества не изменяется до тех пор, пока всё оно не расплавится.

▪️ Испарение — переход вещества из жидкого состояния в газообразное, который происходит с поверхности жидкости. Происходит при любой температуре. Скорость испарения зависит от природы жидкости, температуры, площади поверхности и наличия или отсутствия движения воздуха над поверхностью. Улетевшие молекулы уносят с собой энергию, поэтому при испарении происходит уменьшение температуры жидкости (охлаждение).

▪️ Кристаллизация — процесс образования кристаллов из газов, растворов, расплавов или стёкол. Также кристаллизацией называют образование кристаллов с данной структурой из кристаллов иной структуры (полиморфные превращения) или переход из жидкого состояния в твёрдое кристаллическое. Кристаллизация начинается при охлаждении жидкости до определённой температуры — температуры кристаллизации, которая равна температуре плавления. Во время процесса температура не меняется. Зарождение центров кристаллизации — образование кластеров с упорядоченностью, характерной для кристалла. Рост кристаллов — увеличение размера частиц за счёт присоединения атомов или молекул из жидкости. #физика #термодинамика #мкт #опыты #эксперименты #physics #видеоуроки #научные_фильмы #science

Изохорный процесс

🔥 Термостат

💧 Капля воды падающая на горячий металл 💥в Slow motion

💧 Эффект Лейденфроста

🚀 Что будет, если добавить жидкий газ в бутылку с водой

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

⚙️ 7 препятствий и 5 LEGO-роботов, которые умеют шагать

«Стопоходящая машина» — изобретение русского изобретателя и математика Пафнутия Чебышёва. Устройство было представлено на Всемирной выставке в Париже в 1878 году. Особенности стопоходящей машины:
▪️ Преобразовывала вращательное движение в движение по сложной траектории. Ноги машины сначала двигались горизонтально относительно механизма, а потом поднимались и быстро перемещались в исходную точку.
▪️ Из-за сцепления с поверхностью горизонтальное движение приводило к переносу корпуса вперёд.
▪️ Пока две разнесённые по диагонали ноги двигались, две другие оставались неподвижны. Такой ход соответствовал движению лошади или иного четвероногого животного рысью.
▪️ Не могла поворачивать и перемещалась только по прямой.
▪️ Не имела собственного двигателя, поэтому была больше механизмом, чем машиной. Чтобы привести её в движение, необходимо было тянуть за верёвку или подталкивать сзади.

⚙️ LEGO® Technic Строительство мостов: Задача на 100 кг!

🎻 Когда Lego играет на гитаре лучше, чем ты...

⚙️ Lego MindStorm

👾 Что будет, если надолго оставить инженера с конструктором Lego

#техника #конструктор #ARM #программирование #механика #разработка #микроконтроллеры

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

🔴🔵Задача «никакие три точки не лежат на одной прямой» — одна из задач комбинаторной геометрии, состоящая в нахождении количества точек, которые можно расположить на решётке n×n так, чтобы никакие три точки не находились на одной прямой.

Брасс, Мозер и Пах назвали задачу «одним из самых старых и интенсивно изучаемых геометрических вопросов, касающихся точек решётки»

#математика #math #геометрия #графика #наука #дискретная_математика #графы #задачи

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

📕 N-угольники [1973] Бахман, Шмидт

💾 Скачать книгу

Глава 1. Циклические классы n-угольников.
Глава 2. Циклические отображения n-угольников.
Глава 3. Об изобарических циклических отображениях.
Глава 4. Отображения усреднения.
Глава 5. Идемпотентные элементы и булевы алгебры.
Глава 6. Основная теорема о циклических классах.
Глава 7. Идемпотент-вложение. Факторкольцо кольца главных идеалов.
Глава 8. Булевы алгебры n-угольников (теория I).
Глава 9. Булевы алгебры n-угольников (теория II).
Глава 10. Рациональные компоненты n-угольника.
Глава 11. Комплексные компоненты n-угольника.
Глава 12. Вещественные компоненты n-угольника.

#математика #math #геометрия #графика #наука #дискретная_математика #графы #физика #physics

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

📘 CUDA Fortran for Scientists and Engineers [2011] Greg Ruetsch, Massimiliano Fatica

This document in intended for scientists and engineers who develop or maintain computer simulations and applications in Fortran, and who would like to harness parallel processing power of graphics processing units (GPUs) to accelerate their code. The goal here is to provide the reader with the fundamentals of GPU programming using CUDA Fortran as well as some typical examples without having the task of developing CUDA Fortran code becoming an end in itself. The CUDA architecture was developed by NVIDIA to allow use of the GPU for general purpose computing without requiring the programmer to have a background in graphics. There are many ways to access the CUDA architecture from a programmer’s perspective, either through C/C++ from CUDA C and Open CL, or through Fortran using PGI’s CUDA Fortran. This document pertains to the latter approach. PGI’s CUDA Fortran should be distinguished from the PGI Accelerator product, which is a directive based approach to using the GPU. CUDA Fortran is simply the Fortran analog to CUDA C. The reader of this book should be familiar with Fortran 90 concepts, such as modules, derived types, and array operations. However, no experience with parallel programming (on the GPU or otherwise) is required. Part of the appeal of parallel programming on GPUs using CUDA is that the programming model is simple and novices can get parallel code up and running very quickly. CUDA is a hybrid programming model, where both GPU and CPU are utilized, so CPU code can be incrementally ported to the GPU. This document is divided into two main sections, the first is a tutorial on CUDA Fortran programming, from the basics of writing CUDA Fortran code to some tips on optimization. The second part of this document is a collection of case studies that demonstrate how the principles in the first section are applied to real-world examples.

📗 CUDA Fortran для инженеров и научных работников [2014] Грегори Рутш, Массимилиано Фатика


Fortran – один из важнейших языков программирования для высокопроизводительных вычислений, для которого было разработано множество популярных пакетов программ для решения вычислительных задач. Корпорация NVIDIA совместно с The Portland Group (PGI) разработали набор расширений к языку Fortran, которые позволяют использовать технологию CUDA на графических картах NVIDIA для ускорения вычислений.

Книга демонстрирует всю мощь и гибкость этого расширенного языка для создания высокопроизводительных вычислений. Не требуя никаких предварительных познаний в области параллельного программирования, авторы скрупулезно, шаг за шагом, раскрывают основы создания высокопроизводительных параллельных приложений, попутно поясняя важные архитектурные детали современного графического процессора – ускорителя вычислений.

Издание предназначено для инженеров, научных работников, программистов, в также будет полезно студентам вузов соответствующих специальностей. #математика #CUDA #GPU #графика #наука #Fortran #моделирование #физика #physics #инженерия #параллельные_вычисления

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

📔 Сборник практических задач по математике [1971] Сорокин

Настоящий «Сборник практических задач по математике» ставит своей целью помочь учителям начальных классов (особенно учителям, начинающим работу) в подборе для каждого класса по каждой теме задач с практическим содержанием (помимо тех, какие имеются в принятых учебниках по математике) и дать полезные советы по методике решения таких задач.

Задачи, помещенные в настоящем «Сборнике», заставят ученика действовать: рисовать, чертить, вырезывать, измерять отрезки, находить площади, добывать необходимые для решения задач сведения, составлять планы, сметы, диаграммы, производить денежные расчеты и т.п. Обо всём этом и не только в книге Сборник практических задач по математике (П. И. Сорокин).
#математика #math #задачи #разборы_задач #алгебра #геометрия

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

🧠 Ученые Яндекса разработали и выложили в опенсорс Yambda — один из крупнейших в мире датасетов для рекомендательных систем на 5 миллиардов данных.

👨🏻‍💻 Датасет предназначен для развития рекомендательных систем и откроет новые возможности для научного сообщества и вузов. В основном, в них работают на упрощенных датасетах — в общий доступ редко попадают качественные и объемные данные. Поэтому ученые, исследователи и вузы часто оказываются на шаг позади, когда очередь доходит до исследований рекомендательных алгоритмов. Yambda позволит тестировать и улучшать их с помощью разнообразных обезличенных данных, собранных на основе Яндекс Музыки:

◾️ Датасет представлен в разных размерах: 5 млрд / 500 млн / 50 млн событий — чтобы разработчики и исследователи могли выбрать тот, который больше подходит их задачам и доступным вычислительным ресурсам.

◾️ Публикация актуальных агрегированных данных в открытом доступе даст возможность российской науке активнее развиваться в области рекомендательных систем и привлечет молодых специалистов, заинтересованных в машинном обучении.

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

📙 От Кирхгофа до Планка [1981] Ханс-Георг Шёпф

Книга профессора Ханс-Георга Шёпфа (ГДР) представляет собой краткое изложение истории развития теории теплового излучения. Автор очень интересно преподносит ее читателям: в первой части он излагает теорию теплового излучения с современной точки зрения, во вторую часть включает оригинальные работы основоположников теории теплового излучения - Кирхгофа. Больцмана. Вина, Рэлея, Планка. Книга позволяет читателям (от студентов-физиков до широких кругов научных сотрудников в области физики) познакомиться с одной из наиболее ярких идей нашего века — идеей квантования излучения.

#физика #квантовая_физика #термодинамика #подборка_книг #механика #physics #оптика #мкт #атомная_физика #ядерная_физика #электричество #магнетизм

💡 Physics.Math.Code // @physics_lib

Читать полностью…
Подписаться на канал