physics_lib | Неотсортированное

Telegram-канал physics_lib - Physics.Math.Code

135519

VK: vk.com/physics_math Чат инженеров: @math_code Учебные фильмы: @maths_lib Репетитор IT mentor: @mentor_it YouTube: youtube.com/c/PhysicsMathCode Обратная связь: @physicist_i

Подписаться на канал

Physics.Math.Code

📙 Сборник задач по математике для конкурсных экзаменов во втузы [1969] Сканави М.И.

💾 Скачать книгу

Науки математические с самой глубокой древности обращали на себя особенное внимание, в настоящее время они получили еще больше интереса по влиянию своему на искусство и промышленность.

(П.Л. Чебышев)

Часть I АЛГЕБРА
Часть II ГЕОМЕТРИЯ
Часть III ТРИГОНОМЕТРИЯ
Часть IV ПРИМЕРЫ И ЗАДАЧИ ДЛЯ УСТНЫХ ЭКЗАМЕНОВ
#математика #math #задачи #алгебра #геометрия

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

💧 Принцип работы гидравлического пресса

Принцип работы гидравлического пресса основан на законе Паскаля. 12 Он гласит, что давление, производимое в одной части замкнутой жидкости, передаётся без изменений во все направления. Работа гидравлического пресса происходит следующим образом:
▪️ Прессуемый материал укладывают на платформу большого поршня.
▪️ С помощью малого поршня создают большое дополнительное давление на жидкость.
▪️ Согласно закону Паскаля, давление передаётся без изменений в каждую точку жидкости, находящейся в цилиндрах. Давление такой же величины будет действовать на поршень большого диаметра.
▪️ Так как площадь большого поршня больше площади малого, сила, которая действует на большой поршень, будет больше силы, действующей на малый поршень.
▪️ Под действием этой силы поршень большого диаметра с расположенным на нём телом будет подниматься вверх, пока оно не окажется сжатым между поршнем и верхней неподвижной платформой.
▪️ Повторным движением поршня малой площади жидкость перекачивают из малого цилиндра в большой. Для этого малый поршень поднимают, открывая клапан. В образующееся пространство под малым поршнем из-за создаваемого вакуума засасывается жидкость. При опускании малого поршня жидкость, давя на клапан, его закрывает, открывая при этом клапан. Открывающийся клапан даёт возможность жидкости перетечь в большой сосуд.

🔩 Гидравлический пресс — это простейшая гидравлическая машина, предназначенная для создания значительных сжимающих усилий. Ранее назывался «пресс Брама», так как изобретён и запатентован Джозефом Брама в 1795 году. Гидравлический пресс состоит из двух сообщающихся сосудов-цилиндров с поршнями разного диаметра. Цилиндр заполняется водой, маслом или другой подходящей жидкостью. По закону Паскаля давление в любом месте неподвижной жидкости одинаково по всем направлениям и одинаково передается по всему объёму. Силы, действующие на поршни, пропорциональны площадям этих поршней. Поэтому выигрыш в силе, создаваемый идеальным гидравлическим прессом, равен отношению площадей поршней. Гидравлический пресс нашёл применение во многих отраслях промышленности от изготовления деталей (штамповки) до прессовки мусора в рабочей камере мусоровоза. #physics #опыты #физика #gif #анимация #видеоуроки #гидравлика #гидродинамика

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

💥 Плазменный тороид — портал для входа в другое измерение ⚡️

#физика #gif #электродинамика #магнетизм #опыты #physics #магнетизм

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

🌀 Сравнение графиков: Декартовы координаты (Cartesian coordinates) и полярные координаты

#математика #опыты #геометрия #gif #анимация #видеоуроки #math #geometry

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

Загадка от Жака Фреско

Математическая задачка для тренировки мозга, предложенная нашим подписчиком. Нужно найти красивое выражение (ряд, цепную дробь, интеграл) для положительного решения заданного уравнения.

✏️ У кого какие идеи? Напишите в комментариях, обсуждаем здесь

#математика #math #алгебра #численные_методы #уравнения #задачи #наука #science #разборы_задач #олимпиады

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

🛁 Фонтанчик, работающий на основе физики: кто сможет объяснить в комментариях принцип работы?

#механика #динамика #физика #кинематика #гидростатика #наука #science #physics #гидродинамика

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

📚 7 книг по математике от автора — Дьерд Пойа

💾 Скачать книги

Многие математики старшего поколения осваивали основы анализа по книге Пойа и Сеге «Задачи и теоремы анализа», которая была построена по новаторскому для того времени методу: читатель должен сам доказывать утверждения теорем, таким образом, самостоятельно открывая для себя математический анализ. Позднее Пойа написал серию книг, посвященных математическому творчеству, в которых поставил для себя крайне необычную задачу — научить совершать математические открытия.
physics_math-esli-hotite-nauchitsya-reshat-zadachi-to-reshaite-ih">💡 Статья про Дьёрдь Пойа (Полиа) в нашей группе vk

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

🧲 Сферический магнит парит в воздухе на расстоянии 1.5 см от поверхности бруска дерева, внутри которого скрывается магнитная система. Этот вид левитации использует систему с регулируемыми электромагнитными катушками. Контур обратной связи имеет датчик, работающий на основе эффекта Холла. Всё это позволяет точно настраивать магнитное поле и сбалансировать силу тяжести шарика даже когда основание находится в вертикальном положении.

⚡️ Опыты Фарадея 🧲

🔥 Индукционный нагрев

💫 «Гроб Мухаммеда»

🧲 Как работают трансформаторы?

⚡️ Основные физические понятия электродинамики (Леннаучфильм)

✨ Взаимодействие зарядов. Электростатическая индукция

💫 Исследование электрических полей. Опыт по физике

⚡️ Уравнения Максвелла ✨

⚙️ Электромагнитная подвеска 🧲

#видеоуроки #physics #физика #опыты #электродинамика #электричество #магнетизм #эксперименты #научные_фильмы

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

✈️ Как сделать модель самолёта с небольшим двигателем

Мечта человечества о полёте, возможно, впервые была реализована в Китае, где полёт человека, привязанного (в виде наказания) к бумажным змеям, был описан в VI веке н. э. Позднее первый управляемый полёт на дельтаплане совершил Аббас ибн Фарнас в Аль-Андалусе в IX веке н. э. У Леонардо да Винчи (XV в.) мечта о полёте нашла выражение в нескольких проектах, но он не пытался их реализовывать. Первые серьёзные попытки полёта человека были реализованы в Европе в конце XVIII века.

Братья Уилбер и О́рвилл Райт — американцы, за которыми в большинстве стран мира признаётся приоритет конструирования и постройки первого в мире самолёта, способного к полёту, а также совершение первого управляемого полёта человека на аппарате тяжелее воздуха с двигателем. Возможно братья не стали первыми, кто совершил полёт на экспериментальном самолёте, но они первыми смогли управлять полётом самолёта. Их работы прямо повлияли на все последующие попытки создания самолёта в мире, авиастроение всех ведущих стран.

Фундаментальное достижение братьев Райт — практичные системы управления и устойчивости по трём осям вращения самолёта, чтобы эффективно управлять самолётом и поддерживать его равновесие во время полёта. Их подход стал основой для конструирования и постройки самолётов. Братья Райт сосредоточились на изучении вопросов управления летящим аппаратом, вместо того, чтобы находить возможность устанавливать более мощные двигатели, как это делали другие экспериментаторы. Их эксперименты в аэродинамической трубе оказались плодотворнее, чем эксперименты других пионеров авиации, для создания эффективного крыла и пропеллеров. Технические знания братья Райт приобрели, многие годы работая в своём магазине, где продавали печатные прессы, велосипеды, двигатели и другие механизмы. #физика #physics #механика #аэродинамика #опыты #самоделки #техника #эксперименты

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

⛓️ Тенсегрити (от англ. tensional integrity — «соединение путём натяжения») — принцип построения конструкций из стержней и тросов, в которых стержни работают на сжатие, а тросы — на растяжение.

В основе тенсегрити лежит идея о том, что структура может быть стабильной и прочной, несмотря на то, что её элементы не соприкасаются друг с другом. Вместо этого они соединены таким образом, что каждый элемент работает на растяжение или сжатие, создавая напряжение и поддерживая всю конструкцию. Это позволяет создавать лёгкие и прочные конструкции, которые могут адаптироваться к изменениям окружающей среды. Понятие тенсегрити используется также при объяснении процессов в биологических исследованиях (особенно в биологии клетки) и некоторых других современных отраслях знания, например, в исследованиях строения текстильных тканей, дизайне, исследованиях социальных структур, ансамблевой музыке и геодезии.

Тенсегрити или плавающее сжатие — это конструктивный принцип, основанный на системе изолированных компонентов, находящихся под сжатием внутри сети непрерывного натяжения и расположенных таким образом, что сжатые элементы (обычно стержни или распорки) не касаются друг друга, в то время как предварительно напряжённые элементы (обычно тросы или сухожилия) разграничивают систему в пространстве.

Тенсегрити-структуры встречаются как в природе, так и в созданных человеком объектах: в человеческом теле кости находятся в состоянии сжатия, а соединительные ткани — в состоянии натяжения, и те же принципы применяются в мебели, архитектурном дизайне и не только.
#механика #динамика #физика #статика #технологии #physics #стереометрия #теоретическая_механика #сопромат #видеоуроки #опыты #эксперименты

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

⚡️ Большие токи в нескольких витках провода вызывают существенное магнитное поле. Обратите внимание, что металлическая стружка намагничивается и подобна маленьким стрелочкам компаса располагается вдоль линий индукции магнитного поля. Разумеется в центре кольцевого витка поле перпендикулярно плоскости витка, что мы наблюдаем на видео. Как только ток отключают, то поле исчезает, что видно по осыпающейся металлической стружке, которая является косвенным детектором поля, а следовательно и большого тока. На картинке показан расчет для поля одного витка. А на видео точно N > 10 витков. Вот и получается, что суммарное магнитное поле ~ 0.01-0.02 [Тл]

Величина тока в сварочных проводах может достигать:
▪️ Для бытовых аппаратов — сила тока от 100 до 250 А
▪️ Для полупрофессиональных агрегатов — до 330 А
▪️ Для профессиональных аппаратов — до 500 А.
▪️ Для промышленных установок повышенной мощности — до 680 А.

В начале 19 века, когда Ампер провел серию своих знаменитых экспериментов, электричество и магнетизм по отдельности были достаточно хорошо описаны. Но почти никому в голову не приходило, что эти явления могут быть связаны. Магнетизм впервые упоминается еще в VIII веке до н. э. древними греками, когда был обнаружен магнетит — руда, способная притягивать металлы. Ее природа оставалась неизвестной, однако это не помешало китайским и европейским мореплавателям использовать магнетиты в компасах.

▫️В 1827 году вышла главная для всей жизни ученого книга: «Мемуары о математической теории электродинамических явлений, однозначно выведенных из опыта», в которой Ампер подвел итоги всех своих исследований и впервые употребил термин «Электродинамика».
▫️В 1820 году, параллельно с работой самого Ампера, его коллеги Жан-Батист Био (выдающийся ученый, член Академии наук) и Феликс Савар получили экспериментальные данные. На их основе Лаплас вывел формулу для нахождения вектора индукции магнитного поля. Закон получил название Био-Савара-Лапласа и стал чем-то базовым вроде закона Кулона в электростатике.
▫️В 1831 году Майкл Фарадей открыл явление электромагнитной индукции, когда вращающийся вокруг катушки с проводником магнит приводил к появлению ЭДС в ней. По сути, появился первый электрогенератор. #магнитизм #опыты #физика #магнитное_поле #сварка #physics #ток #индукция #оптика #видеоуроки

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

⚡️ Linux теперь в Telegram!

Ребята сделали крутейший канал про Linux, где на простых картинках и понятном языке обучают работе с этой ОС, делятся полезными фишками и инструментами

Подписывайтесь: @linuxos_tg

Читать полностью…

Physics.Math.Code

Эффект Вавилова — Черенкова — излучение света электрически заряженной частицей при её движении в среде со скоростью, превышающей фазовую скорость света в этой среде.

Явление было обнаружено в 1934 году П. А. Черенковым при исследовании люминесценции растворов как слабое голубое свечение жидкостей под действием гамма-излучения. Объяснение эффекта смогли дать советские физики Игорь Тамм и Илья Франк в 1937 году. Они объяснили эффект равномерным и прямолинейным движением заряженных частиц среды со скоростями, превышающими скорость света в конкретной среде.

Эффект Вавилова — Черенкова используется в разных областях, например:
▪️ В медицине для лучевой терапии — помогает с высокой точностью разрушать опухоль, не повреждая здоровые клетки.
▪️ В детекторах — с помощью него удаётся определить энергию, скорость и направление элементарных частиц космических лучей.
▪️ В астрономии для исследования гамма-излучения от разных астрономических объектов.

За открытие и создание теории эффекта Вавилова — Черенкова в 1958 году И. Е. Тамм, И. М. Франк и П. А. Черенков были удостоены Нобелевской премии.
#колебания #ядерная_физика #физика #атомная_физика #свет #physics #излучение #волны #оптика #видеоуроки

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

Кривая дракона — общее название для некоторых фрактальных кривых, которые могут быть аппроксимированы рекурсивными методами, такими как L-системы. Дракон Хартера, также известный как дракон Хартера — Хейтуэя. Он был описан в 1967 году Мартином Гарднером в колонке «Математические игры» журнала «Scientific American». Многие из свойств фрактала были описаны Чендлером Дэвисом (Chandler Davis) и Дональдом Кнутом.

👩‍💻 Множество Мандельброта

🌿 Фракталы: Порядок в хаосе [2008] В поисках скрытого измерения [Fractals. Hunting the Hidden Dimension]

🌀 10 фракталов, которые стоит увидеть

🔺 Так выглядит фрактал

👩‍💻 Треугольник Серпинского

📕 Фрактальная геометрия природы [2002] Бенуа Мандельброта

🌿 Папоротник Барнсли

📘 Фракталы повсюду Второе издание [2000] Майкл Ф. Барнсли

#фракталы #математика #геометрия #math #physics #geometry #science

💡 Physics.Math.Code
// @physics_lib

Читать полностью…

Physics.Math.Code

📚 12 лучших книг по теме: Теория Графов

💾 Скачать книги

🪄 Теория графов — раздел дискретной математики, изучающий графы. В самом общем смысле граф — это множество точек (вершин, узлов), которые соединяются множеством линий (рёбер, дуг). Теория графов (то есть систем линий, соединяющих заданные точки) включена в учебные программы для начинающих математиков, поскольку:
▪️как и геометрия, обладает наглядностью;
▪️как и теория чисел, проста в объяснении и имеет сложные нерешённые задачи;
▪️не имеет громоздкого математического аппарата («комбинаторные методы нахождения нужного упорядочения объектов существенно отличаются от классических методов анализа поведения систем с помощью уравнений»);
▪️имеет выраженный прикладной характер.
#дискретная_математика #математика #алгоритмы #информатика #программирование #теория_графов #it #computer_science

📚 Подборка книг по теории графов [15 книг]

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

🧲 При резком приближении мощного магнита к куску металла, например к алюминию, как на видео, в куске алюминия возникают вихревые токи, которые ещё называют токами Фуко. Такие токи возникают из-за действия переменного по времени магнитного поля ( B = B(t), Ф = B⋅S, ε = - dФ/dt ). Вихревые токи создают свои собственные магнитные поля, которые направлены противоположно магнитному полю магнита (по правилу Ленца). В соответствии с правилом Ленца вихревые токи протекают внутри проводника по таким путям и направлениям, чтобы своим действием возможно сильнее противиться причине, которая их вызывает. Вследствие этого при движении в магнитном поле на хорошие проводники действует тормозящая сила, вызываемая взаимодействием вихревых токов с магнитным полем. Этот эффект используется в ряде приборов для демпфирования колебаний их подвижных частей (маятник Вальтенхофена).

📝 Некоторые свойства вихревых токов:
▪️Могут использоваться для левитации токопроводящих объектов, движения или интенсивного торможения.
▪️Могут иметь нежелательные эффекты, например потери мощности в трансформаторах.
▪️Из-за сопротивления материала вихревые токи нагревают его, преобразуя электрическую энергию в тепловую.

🧲 Электромагнитное торможение колебаний маятника

🔥 Индукционный нагрев

💫 «Гроб Мухаммеда»

🧲 Как работают трансформаторы?

⚡️ Основные физические понятия электродинамики (Леннаучфильм)

✨ Взаимодействие зарядов. Электростатическая индукция

💫 Исследование электрических полей. Опыт по физике

⚡️ Уравнения Максвелла ✨

⚙️ Электромагнитная подвеска 🧲

🟢 Эффект Мейсснера

Пример применения вихревых токов — отделение алюминиевых банок от других металлов в вихретоковом сепараторе. Чёрные металлы цепляются за магнит, а алюминий (и другие цветные проводники) отталкиваются от магнита. С очень сильным ручным магнитом, например, сделанным из неодима, можно легко наблюдать очень похожий эффект, быстро проведя магнитом по монете с небольшим промежутком. В зависимости от силы магнита, идентичности монеты и расстояния между магнитом и монетой, можно заставить монету протолкнуться немного впереди магнита — даже если монета не содержит магнитных элементов. Другой пример — это падение сильного магнита в медной трубке — магнит падает очень медленно.

В сверхпроводнике поверхностные вихревые токи точно нейтрализуют поле внутри проводника, поэтому магнитное поле не проникает через проводник. Поскольку энергия не теряется в сопротивлении, вихревые токи, возникающие при приближении магнита к проводнику, сохраняются даже после того, как магнит находится в неподвижном состоянии, и могут точно уравновесить силу тяжести, допуская магнитную левитацию. Сверхпроводники также демонстрируют отдельное по своей сути квантово-механическое явление, называемое эффектом Мейснера, при котором любые силовые линии магнитного поля, присутствующие в материале, когда он становится сверхпроводящим, вытесняются, таким образом, магнитное поле в сверхпроводнике всегда равно нулю. #видеоуроки #physics #физика #опыты #электродинамика #электричество #магнетизм #эксперименты #научные_фильмы

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

🍎 Менее 10% людей решают эту математическую головоломку про яблоки

Сегодня я предлагаю вам подумать над интересной головоломкой. Её опубликовал один пользователь сети X из Японии. Задача вызвала много споров в комментариев. В большинстве случаев ответы были шуточные или некорректные. Мы же разберем задачу с точки зрения математики.

Задача: 3 человека хотят поровну разделить между собой 2 яблока. Но у них есть только 1 нож, которым, согласно условию задачи, они могут воспользоваться всего 1 раз. Что нужно сделать для того, чтобы каждый человек получил равную часть яблок?


📝 Читать разбор задачи 🍏

#головоломка #задачи #problem #физика #геометрия #geometry #topology #разбор_задач

💡 Репетитор IT mentor // @mentor_it

Читать полностью…

Physics.Math.Code

⚡️ Python теперь в Telegram!

Ребята сделали крутейший канал, где на простых картинках и понятном языке обучают Python, делятся полезными фишками и инструментами

Подписывайтесь: @PythonPortal

Читать полностью…

Physics.Math.Code

💧 Гидростатический парадокс или парадокс Паскаля — явление, при котором сила весового давления налитой в сосуд жидкости на дно сосуда может отличаться от веса налитой жидкости. В сосудах с увеличивающимся кверху поперечным сечением сила давления на дно сосуда меньше веса жидкости, в сосудах с уменьшающимся кверху поперечным сечением сила давления на дно сосуда больше веса жидкости. Сила давления жидкости на дно сосуда равна весу жидкости лишь для сосуда цилиндрической формы. Математическое объяснение парадоксу было дано Симоном Стевином в 1612 году.

Причина гидростатического парадокса состоит в том, что по закону Паскаля жидкость давит не только на дно, но и на стенки сосуда. Если стенки сосуда вертикальные, то силы давления жидкости на его стенки направлены горизонтально и не имеют вертикальной составляющей. Сила давления жидкости на дно сосуда в этом случае равна весу жидкости в сосуде. Если же сосуд имеет наклонные стенки, давление жидкости на них имеет вертикальную составляющую. В расширяющемся кверху сосуде она направлена вниз, в сужающемся кверху сосуде она направлена вверх. Вес жидкости в сосуде равен сумме вертикальных составляющих давления жидкости по всей внутренней площади сосуда, поэтому он и отличается от давления на дно.

В 1648 году парадокс продемонстрировал Блез Паскаль. Он вставил в закрытую бочку, наполненную водой, узкую трубку и, поднявшись на балкон второго этажа, влил в эту трубку кружку воды. Из-за малого диаметра трубки вода в ней поднялась до большой высоты, и давление в бочке увеличилось настолько, что крепления бочки не выдержали, и она треснула.

Похожий кажущийся парадокс возникает при рассмотрении закона Архимеда. Согласно распространённой формулировке закона Архимеда, на погружённое в воду тело действует выталкивающая сила, равная весу воды, вытесненной этим телом. Из такой формулировки можно сделать неверное умозаключение, что тело не сможет плавать в сосуде, не содержащем достаточное количество воды для вытеснения. Однако на практике тело может плавать в резервуаре с таким количеством воды, масса которой меньше массы плавающего тела. Это возможно в ситуации, когда резервуар лишь ненамного превышает размеры тела. Например, когда корабль стоит в тесном доке, он остаётся на плаву точно так же, как в открытом океане, хотя масса воды между кораблём и стенками дока может быть меньше, чем масса корабля. Объяснение парадокса заключается в том, что архимедова сила создаётся гидростатическим давлением, которое зависит не от веса воды, а только от высоты её столба. Как в гидростатическом парадоксе на дно сосуда действует сила весового давления воды, которая может быть больше веса самой воды в сосуде, так и в вышеописанной ситуации давление воды на днище корабля может создавать выталкивающую силу, превышающую вес этой воды. #physics #опыты #физика #gif #анимация #видеоуроки #гидравлика #гидродинамика

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

🧪 Закон сообщающихся сосудов — один из законов гидростатики, гласящий, что в сообщающихся сосудах уровни однородных жидкостей, считая от наиболее близкой к поверхности земли точки, равны. Это происходит потому что напряжённость гравитационного поля и давление в каждом сосуде постоянны (гидростатическое давление). Это было обнаружено Симоном Стевином.

Рассмотрим два сообщающихся сосуда, в которых находится жидкость плотностью ρ. Давление жидкости в I сосуде расписывается по формуле p₁ = ρgh₁, где h₁ — высота столба в I сосуде. Давление жидкости во II сосуде p₂ расписывается аналогично как p₂ = ρgh₂ , где h₂ — высота столба во II сосуде. Так как система открытая, то давления равны, и p₁ = p₂ ⇒ ρgh₁ = ρgh₂ ⇒ h₁ = h₂.
Аналогично предыдущему утверждению, справедливому только для однородных жидкостей, можно доказать и следующее утверждение: отношение уровней жидкостей обратно пропорционально отношению их плотностей. В XVII веке Блез Паскаль доказал, что давление, оказываемое на молекулу жидкости, передается в полном объеме и с одинаковой интенсивностью во всех направлениях.

Со времен Древнего Рима концепция сообщающихся сосудов использовалась для внутренней сантехники через водоносные слои и свинцовые трубы. Вода достигнет одинакового уровня во всех частях системы, которые действуют как сообщающиеся сосуды, независимо от того, какая самая низкая точка труб – хотя на практике самая низкая точка системы зависит от способности сантехники выдерживать давление жидкости.
В городах часто используются водонапорные башни , благодаря которым городская водопроводная система выполняет функцию сообщающихся сосудов, распределяя воду на верхние этажи зданий с достаточным давлением. Гидравлические прессы , использующие системы сообщающихся сосудов, широко используются в различных промышленных процессах. #физика #опыты #эксперименты #наука #science #physics #механика #гидродинамика #видеоуроки #гидростатика

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

📚 7 книг по математике от автора — Дьерд Пойа

Дьёрдь Пойа, или, в английском варианте, Джордж Полиа (венг. Polya Gyorgy, англ. George Polya, 1887-1985) вошел в историю науки не только как выдающийся математик, но даже в большей мере — как выдающийся педагог и автор блестящих книг, посвященных методике математического преподавания и математического творчества. Все интересные факты читайте в прикрепленной статье.

📗 Задачи и теоремы из анализа (в 2-х частях) [1978] Полиа, Сеге
📗 Математика и правдоподобные рассуждения [1975] Джордж Пойа
📗 Неравенства [1948] Дьерд Пойа, Харди, Литлвуд
📗 Изопериметрические неравенства в математической физике [1962] Полиа, Сеге
📗 Как решать задачу [1961] Д. Пойа
📗 Математическое открытие. Решение задач. Основные понятия, изучение и преподавание [1970] Пойа Джордж
#математика #подборка_книг #math #maths #алгебра #mathematics

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

⭕️🌀 Очередная проволочно-веревочная головоломка с задачей : освободить кольцо. #задачи #головоломки #геометрия #топология

⬜️ vs ✉️ Как поместить деревянный квадрат в прямоугольный конверт?

🟢 Топологическая загадка

Ещё одна интересная головоломка

〽️ Ремень Дирака

⭕️ Кольцо и цепочка

♾️ Два полукольца — сложное соединение

➿ Петля Мёбиуса

📚 Топология — подборка книг [8 книг]

📚 40 книг по топологии — математическая подборка

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

🟢 2 металлических шара способны прожечь бумагу?

При столкновении двух металлических шаров, движущихся друг на друга, в точке удара может прожечься бумага.
Это происходит из-за того, что в момент столкновения шары кратковременно деформируются и отскакивают друг от друга. Если скорость шаров достаточная, то при деформации выделяется тепло. Кроме того, поскольку столкновение шаров происходит в точке, то «концентрация» тепла получается большой.

Вопрос для наших физиков: как оценить скорость шариков в момент удара?

📝 Некоторые расчеты и идеи

#физика #physics #механика #кинематика #опыты #термодинамика #техника #эксперименты

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

Звёздообразный или радиальный двигатель — поршневой двигатель внутреннего сгорания, цилиндры которого расположены радиальными лучами вокруг одного коленчатого вала через равные углы. Звездообразный двигатель имеет небольшую длину и позволяет компактно размещать большое количество цилиндров. Нашёл широкое применение в авиации.

Главное отличие звездообразного двигателя от поршневых двигателей других типов заключается в конструкции кривошипно-шатунного механизма. Один шатун является главным (он похож на шатун обычного двигателя с рядным расположением цилиндров), остальные являются прицепными и крепятся к главному шатуну по его периферии (такой же принцип применяется в некоторых V-образных двигателях). Эксплуатационным недостатком любого звездообразного двигателя является возможность протекания масла в нижние цилиндры во время стоянки, в связи с чем требуется перед запуском двигателя убедиться в отсутствии масла в нижних цилиндрах. Запуск двигателя при наличии масла в нижних цилиндрах приводит к гидроудару и поломке кривошипно-шатунного механизма. Этот недостаток неустраним, поскольку он является конструкционным. В зависимости от размеров и мощности двигателя, звездообразные двигатели могут за счёт удлинения коленчатого вала образовывать несколько звёзд-отсеков. Четырёхтактные звездообразные моторы обычно имеют нечётное число цилиндров в отсеке — это позволяет давать искру в цилиндрах «через один». Возможна работа и с чётным количеством цилиндров (чаще всего — при расположении цилиндров в несколько рядов).

⚙️ Сферически объемная роторная машина и ещё немного о необычных вариантах ДВС.

⚙️ Роторный двигатель

💥💨 Как работает двухтактный двигатель скутера

⚙️ Сравнение моторных масел

⚙️ Авиационный гироскоп


#физика #physics #механика #видеоуроки #научные_фильмы #ДВС #техника #опыты #лекции

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

🎮 Нейросеть ШАДа Яндекса поможет планировать уборку берегов водоёмов от мусора в труднодоступных регионах

ML-разработчики Школы анализа данных Яндекса при поддержке Yandex B2B Tech и ДВФУ создали и выложили в открытый доступ нейросеть, которая умеет определять объём, массу и виды мусора на побережьях водоёмов. Решение успешно применили в экологической экспедиции в Южно-Камчатском федеральном заказнике – особо охраняемой природной территории на Дальнем Востоке, а также тестируют в Арктике и других регионах. Технологию смогут бесплатно использовать службы экологического контроля и волонтёры для более быстрого сбора мусора в труднодоступных местах.

👨🏻‍💻 Для разработчиков: Нейросеть распознает на аэроснимках 6 видов мусора, включая рыболовные сети, с точностью до 80%. Код разработки выложен в опенсорс, его может использовать в своем проекте каждый желающий.

Решение уже использовали во время экспедиции в Южно-Камчатском федеральном заказнике. Специалисты выяснили, что больше всего побережье загрязнено пластиковой тарой и упаковкой (33-39%), а также отходами промышленного рыболовства (27–29%). С помощью нейросети эксперты рассчитали, что для очистки берега потребуется группа в 20 волонтёров, два самосвала, два квадроцикла и фронтальный погрузчик. Далее добровольцы убрали с побережья пять тонн отходов. Таким образом, благодаря использованию дронов и нейросети организовать уборку удалось в 4 раза быстрее, чем без использования технологии.

▪️ Искусственный интеллект поможет волонтерам быстрее убирать мусор на берегах водоёмов
▪️ Нейросеть разработали специалисты Yandex B2B Tech и студенты ШАДа
▪️ Решение уже работает в Кроноцком заповеднике, а еще его тестируют в Арктике, на Байкале и в других регионах.
▪️ Это бесплатно и доступно в опенсорс

Читать полностью…

Physics.Math.Code

🔴Двойной маятник — простейший механизм для демонстрации хаотичного движения

В физике и математике, в отрасли динамических систем, двойной маятник — это маятник с другим маятником, прикреплённым к его концу. Двойной маятник является простой физической системой, которая проявляет разнообразное динамическое поведение со значительной зависимостью от начальных условий. Движение маятника руководствуется связанными обыкновенными дифференциальными уравнениями. Для некоторых энергий его движение является хаотическим.

Система считается хаотичной, если обладает высокой чувствительностью к начальному состоянию. Две идентичные системы с мало отличающимися начальными положениями будут заметно отличаться спустя какое-то время. #видеоуроки #физика #механика #gif #математика #physics #math #динамика

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

🟠 Если длина дуги окружности равна по длине ее радиусу, получившийся угол равен одному радиану

Радиан
(русское обозначение: рад, международное: rad; от лат. radius — луч, радиус) — угол, соответствующий дуге, длина которой равна её радиус. Поскольку длина дуги окружности пропорциональна её угловой мере и радиусу, длина дуги окружности радиуса R и угловой величины α, измеренной в радианах, равна α ∙ R. Так как величина угла, выраженная в радианах, равна отношению длины дуги окружности (м) к длине её радиуса (м), угол в радианном измерении — величина безразмерная. #gif #геометрия #физика #математика #math #physics #geometry

a[°] = α[рад] × (360° / (2π)) или α[рад] × (180° / π),
α[рад] = a[°] : (180° / π) = a[°] × (π / 180°),
где α[рад] — угол в радианах, a[°] — угол в градусах.

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

Кнут способен преодолеть звуковой барьер. При правильном использовании кончик кнута развивает скорость более 1100 км/ч и создаёт характерный хлопок.

Это возможно благодаря специфической конструкции кнута: поперечное сечение и масса кнута постепенно уменьшаются в направлении от ручки к кончику, и скорость кончика кнута увеличивается пропорционально его утончению. Этот вывод дают формулы скорости для бегущей волны.

Некоторые обычные кнуты, такие как кнут для быка или хлыст для скота, способны двигаться быстрее звука: кончик кнута превышает эту скорость и вызывает резкий треск — буквально звуковой удар.

🦕 Некоторые палеобиологи сообщают, что компьютерные модели их биомеханических возможностей предполагают, что некоторые длиннохвостые динозавры, такие как бронтозавр, апатозавр и диплодок, могли взмахивать хвостами со сверхзвуковой скоростью, издавая треск. Это открытие является теоретическим и оспаривается другими специалистами в этой области. #колебания #геометрия #физика #математика #math #physics #акустика #волны #звук #видеоуроки

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

📚 12 лучших книг по теме: Теория Графов

📕 Графы и их применение [1965] Оре

📘 Теория графов для учителей и школьников [2017] Мельников
📗 Графы и их применение, Пособие для учителей [1979] Березина Л.Ю.
📒 Графы [2014] Гуровиц В.М., Ховрина В.В.
📔 Теория графов [2018] Омельченко А.В.
📓 Теория графов, Алгоритмический подход [1978] Кристофидес Н.
📙 Теория графов [2003] Харари Ф
📘 Введение в теорию графов [2019] Уилсон Р.Дж.
📕 Олимпиадная математика, Задачи по теории графов с решениями и указаниями [2023] Семендяева Н.Л., Федотов М.В.
📗 Дискретная математика: графы, матроиды, алгоритмы [2001] Асанов, Баранский, Расин

В этих книгах:
▪️ Основы теории графов и их приложение для внеклассной работы в математических кружках
▪️ Все основные разделы современной теории графов — деревья, циклы, связность в графах, паросочетания, раскраски графов, планарные графы. В конце каждого параграфа приводятся задачи, дополняющие изложенный в учебнике теоретический материал.
▪️ Разнообразные алгоритмы, связанные с нахождением структурных и числовых характеристик объектов из теории графов. В частности, подробно рассматриваются различные алгоритмы поиска решения в задаче коммивояжера.
▪️ Многочисленные примеры иллюстрируют работу конкретных алгоритмов. Приводятся оценки сложности соответствующих процедур.
▪️ Взаимосвязь между теорией графов и теоретической кибернетикой (особенно теорией автоматов, исследованием операций, теорией кодирования, теорией игр).
#дискретная_математика #математика #алгоритмы #информатика #программирование #теория_графов #it #computer_science

💡 Physics.Math.Code // @physics_lib

Читать полностью…

Physics.Math.Code

⬜️ vs ✉️ Как поместить деревянный квадрат в прямоугольный конверт?

Оказывается, что такая непростая с виду головоломка решается очень просто. Автором этой загадки является Хироказу Ивасава, дизайнер и любитель головоломок. Его задача с квадратом и конвертом заняла первое место на конкурсе загадок Puzzle of the Year в 2012 году. #задачи #головоломки #геометрия #топология

🟢 Топологическая загадка

Ещё одна интересная головоломка

〽️ Ремень Дирака

⭕️ Кольцо и цепочка

♾️ Два полукольца — сложное соединение

➿ Петля Мёбиуса

📚 Топология — подборка книг [8 книг]

📚 40 книг по топологии — математическая подборка

💡 Physics.Math.Code // @physics_lib

Читать полностью…
Подписаться на канал