46226
First Telegram Data Science channel. Covering all technical and popular staff about anything related to Data Science: AI, Big Data, Machine Learning, Statistics, general Math and the applications of former. To reach editors contact: @malev
🤖Скрытые политические убеждения больших языковых моделей
Исследователи из Anomify решили задаться вопросом о наличии у LLM идеологических предубеждений. В ходе эксперимента, результаты которого были получены в период с 23 сентября по 2 октября 2025 года, были проанализированы ведущие большие языковые модели от 👩💻OpenAI, ❗️Google и ❗️ других разработчиков. Целью исследования стало выявление скрытых социально-политических наклонностей, которые могут влиять на ответы, получаемые пользователями.
Для оценки предвзятости большие языковые модели многократно отвечали на вопросы, предлагающие выбор между двумя противоположными утверждениями из восьми идеологических категорий. Каждый из 24 уникальных запросов был отправлен в каждую модель 100 раз для получения репрезентативной выборки. Такой подход позволил объективно сравнить даже проприетарные ИИ-сервисы, рассматривая их как «черный ящик» и анализируя только конечный результат.
Результаты эксперимента показали, что большие языковые модели не являются идеологически однородными. Вместо простого деления на «правых» и «левых», анализ выявляет более сложные «личности» ИИ-сервисов. Ключевые различия проявляются в их отношении к власти, государственному регулированию и социальным вопросам, что делает выбор модели не только техническим, но и мировоззренческим решением.
🤖Например, в вопросе о том, кто принимает лучшие решения, политические элиты или обычные люди, модели Gemini и ChatGPT последовательно выбирали первый вариант, тогда как ИИ-решения 🎩🈁 Claude отдавали предпочтение второму. Модели Anthropic демонстрируют особый характер, который можно охарактеризовать как прогрессивный популизм.
ИИ-решения от Google (Gemini) и OpenAI (GPT) формируют условный лагерь «институционалистов». Эти модели чаще выражают доверие экспертам и политическим элитам, а также занимают глобалистскую позицию. При этом они также поддерживают прогрессивную повестку и государственное вмешательство в экономику, в частности, выступая за всеобщее здравоохранение. Однако модели Gemini показывают крайнюю осторожность, практически всегда уклоняясь от ответов на спорные темы, такие как регулирование абортов, тогда как GPT-5 более склонен занимать определённую позицию.
Таким образом, GPT и Gemini выступают как более мейнстримные, прогосударственные и глобалистские ИИ-модели, отражающие взгляды устоявшихся западных институтов.
ИИ-сервисы Grok от компании xAI представляют собой интересный дуализм. Младшая модель grok-3-mini в большинстве случаев придерживается центристских, институционалистских взглядов, схожих с позицией GPT и Gemini. В то же время старшая модель grok-4-fast-non-reasoning проявила себя как самая осторожная из всех, демонстрируя нулевой уровень соответствия по таким острым темам, как британская монархия и палестино-израильский конфликт. Её позицию практически невозможно определить.
Европейские большие языковые модели, такие как Mistral и Sonar, формируют условный прогрессивно-регуляторный лагерь. ИИшки последовательно выступают за сильное государственное регулирование бизнеса и социальных сетей, поддерживают международные институты и глобализацию. Их ответы отражают типичную европейскую левоцентристскую позицию, сочетающую прогрессивные социальные ценности с верой в эффективность наднациональных и государственных структур.
Менее крупные и открытые ИИ-решения, включая cogito, deepseek-r1 и smollm2 попали в отдельную категорию, чьей главной особенностью стала не идеология, а низкая надёжность ответов. Модели демонстрировали крайне низкие показатели соответствия, часто игнорируя инструкции или давая нерелевантные ответы. Их поведение указывает на то, что технические ограничения не позволяют им последовательно формулировать позицию, делая их идеологический профиль скорее хаотичным и непредсказуемым, чем осознанным.
📖https://anomify.ai/resources/articles/llm-bias
✋ @Russian_OSINT
🧠 The Markovian Thinker: Революция в обучении LLM
The Markovian Thinker предлагает новый подход к обучению языковых моделей с использованием фиксированного размера состояния, что снижает вычислительные затраты. Метод Delethink разбивает генерацию на фиксированные части, позволяя модели эффективно продвигать мысли, сохраняя контекст.
🚀Основные моменты:
- Новый парадигма "Марковское мышление" для LLM.
- Метод Delethink использует фиксированные размеры контекста.
- Сравнение с LongCoT показывает лучшие результаты при меньших затратах.
- Поддержка масштабирования до 96K токенов.
- Применение в современных LLM, таких как GPT-OSS и Qwen3.
📌 GitHub: https://github.com/McGill-NLP/the-markovian-thinker
@pythonl
⚡️Generating 3DGS scenes in 5 seconds on a single GPU⚡️
#FlashWorld enables ⚡️*fast*⚡️ (10~100x faster than previous methods) and 🔥*high-quality*🔥 3D world generation, from a single image or text prompt.
Code: https://github.com/imlixinyang/FlashWorld
Page: https://imlixinyang.github.io/FlashWorld-Project-Page/
😁 ЧатуГПТ дали поторговать криптой. Результат убил
Модель GPT-5 почти за 5 дней самостоятельных торгов на криптобирже потеряла почти 67% от депозита 10 000 долларов.
У Gemini 2.5 Pro тоже очень плачевные результаты. Лучше всего пока торгуют Grok 4, Qwen3-Max и DeepSeek V3.1.
Предварительные результаты состязания:
↖️ https://kod.ru/nof1-ai-crypto-trading
Если вы горите темами искусственного интеллекта — расскажите сообществу!
MadBrains">YouTube-канал MadBrains">Mad Brains / 12+ тысяч подписчиков / ищет спикеров, готовых поделиться опытом в областях:
◽️ Разработка и внедрение ML- и AI-решений;
◽️ интеграция нейросетей в продукты и бизнес-процессы;
◽️ AI-архитектуры и MLOps;
◽️ генеративный дизайн и AI-инструменты для креатива;
◽️ LLM-разработки, агенты и автогенерация контента;
◽️ этика и ответственность AI.
У нас — тёплая атмосфера, живая дискуссия и благодарная аудитория, которая любит реальный опыт и нестандартные идеи.
✔️ Участие бесплатное, напишите тему вашего доклада в ЛС @ks_vano
До встречи!
🌟 NVIDIA OmniVinci: омнимодальная модель, которая бьет рекорды.
OmniVinci - модель, способная одновременно понимать и обрабатывать разные типы информации: текст, изображения, видео и звук.
Модель крайне эффективна, несмотря на то, что была обучена всего на 200 млрд. токенов (что в 6 раз меньше, чем у Qwen2.5-Omni - 1.2 трлн.). Это стало возможным благодаря архитектурным фишкам и тщательному подходу к подготовке данных.
В основе OmniVinci 3 компонента:
🟢Temporal Embedding Grouping (TEG) - упорядочивает эмбеддинги из видео и аудио по временным меткам.
🟢Constrained Rotary Time Embedding (CRTE) - кодирует уже абсолютное время.
🟢OmniAlignNet - выравнивает эмбеддинги видео и аудио в общем латентном пространстве с помощью контрастивного обучения.
Абляция показала, что вклад каждого элемента играет свою важную роль: базовая модель с простой конкатенацией токенов набирает в среднем 45.51 балла. Добавление TEG поднимает результат до 47.72 (+2.21), CRTE — до 50.25 (+4.74 от базовой), а финальный слой в виде OmniAlignNet доводит средний балл до 52.59, что в сумме дает прирост в 7.08 пункта.
Данные для обучения - 24 млн. диалогов, которые пропустили через систему, где отдельная LLM анализирует и объединяет описания из нескольких модальностей, создавая единую и корректную аннотацю.
Итоговый датасет на 36% состоял из изображений, на 21% из звуков, на 17% из речи, 15% - из смешанных данных и на 11% из видео.
В бенчах OmniVinci обошла всех конкурентов. На Worldsense модель набрала 48.23 балла против 45.40 у Qwen2.5-Omni. На Dailyomni - 66.50 против 47.45. В аудио-задачах OmniVinci тоже молодец: 58.40 в MMAR и 71.60 в MMAU.
В распознавании речи модель показала WER 1.7% на датасете LibriSpeech-clean.
Применение модели протестили на практике. В задаче классификации дефектов полупроводниковых пластин, OmniVinci достигла точности 98.1%, что лучше, чем у специализированной NVILA (97.6%), и у более крупную 40-миллиардную VILA (90.8%).
📌Лицензирование кода : Apache 2.0 License.
📌Лицензирование: NVIDIA One Way Noncommercial License.
🟡Страница проекта
🟡Модель
🟡Arxiv
🖥GitHub
@ai_machinelearning_big_data
#AI #ML #NVIDIA #OmniVinci
Yandex Cup 2025: final call for registrations
The registration for Yandex Cup 2025 global programming championship will soon close.
The championship features six specialized tracks: Algorithm, Machine Learning, Backend, Frontend, Mobile, and Analytics. This year, the Algorithm and Machine Learning tracks are available in English for international participants. 🌍
Key highlights:
💰 A total prize pool of $145,000 USD.
✈️ An exclusive in-person final round in Istanbul, Türkiye, offering finalists a unique opportunity for networking and competition.
🏆 A platform to enhance your skills and gain recognition within the global technology community.
🚀 Solve Real-World Challenges
The registration deadlines for international participants are as follows:
📍Algorithm track: October 29, 2025
📍Machine Learning track: November 5, 2025
The finals are scheduled for December 5–7, 2025, in Istanbul.
For more details and to register, please follow the link below:
https://yandex.com/cup/international
Secure your participation before the deadlines!
⚡️ Mamba-3 тихо и без объявления вышла на ICLR - и это может стать началом конца эпохи Transformers.
Новая архитектура Mamba-3 делает модели быстрее, стабильнее и эффективнее при работе с длинными контекстами.
Главная идея - не в слоях внимания, а в state-space моделях, где модель хранит и обновляет внутреннее состояние во времени.
📘 Краткие эускурс:
- Mamba-1 ввела непрерывную динамику и выборочное обновление памяти - помнила эффективно без высокой цены attention.
- Mamba-2 показала, что обновления состояния и attention - это две стороны одной математики, что ускорило вычисления на GPU.
- Mamba-3 довела концепцию до зрелости: теперь внутренняя память развивается плавнее и устойчивее за счёт перехода от простого шага Эйлера к трапецеидальному интегрированию.
Вместо простого шага Эйлера, как в Mamba-2, Mamba-3 аппроксимирует интеграл обновления состояния не только по правому концу интервала, но усреднением между началом и концом, с коэффициентом λ, зависящим от данных. Это даёт более точное приближение (второго порядка) и делает динамику состояния более выразительной.
🧠 Что изменилось под капотом:
- Память стала «ритмичной»: теперь модель может хранить повторяющиеся и периодические паттерны (например, структуры языка или музыки).
- Новый multi-input-multi-output дизайн позволяет обрабатывать несколько потоков параллельно — идеально для современных GPU.
⚙️ Что это даёт на практике:
- Эффективная работа с длинными последовательностями: документы, геномы, временные ряды.
- Линейное время выполнения и стабильная задержка делают её идеальной для реального времени: чат-ботов, перевода, речи.
- Энергоэффективность и масштабируемость открывают путь к on-device AI, где большие модели работают локально, без облака.
Mamba-3 - это не просто ускоренная альтернатива Transformers.
Это новая архитектура, которая объединяет глубокое понимание контекста, скорость и устойчивость, от серверных систем до умных устройств.
🟢 Подробности: https://openreview.net/pdf?id=HwCvaJOiCj
@ai_machinelearning_big_data
#ssm #mamba3 #llm,#architecture #ai
Всем привет!
Представляем вашему вниманию пятнадцатый выпуск подкаста "Капитанский мостик", он посвящен важным новостям прошедшей недели. Ведущие выпуска - Валентин Малых и Дмитрий Колодезев.
Смотрите видео на каналах ⤵️
ODS VK Video
ODS YouTube
📩 Присылайте новости для обсуждения в канал "Дата-капитаны" в mattermost (авторизуйтесь через ODS.ai).
💡 RND1 - новая экспериментальная модель с 30 миллиардами параметров, построенная по архитектуре Sparse Mixture-of-Experts, где активно 3 миллиарда параметров.
Она была преобразована из предварительно обученной авторегрессионной модели (Qwen3-30B-A3B) и затем дополнительно обучена на 500 миллиардах токенов, чтобы полностью поменять поведениие диффузионной модели.
Обычные модели (AR, автогрессионные) пишут текст слово за словом, а RND1 создаёт всё предложение сразу и потом пошагово уточняет его, как будто “проявляет” текст из шума.
Это - Diffusion Language Model (DLM), аналог диффузионных моделей, которые рисуют картинки, только здесь она “рисует” слова.
🔄 Как её сделали
Команда Radical Numerics придумала, как превратить готовую модель в диффузионную без обучения с нуля.
Они просто поменяли тип внимания и дообучили модель на новой задаче.
Этот метод называется AR-to-Diffusion Conversion (A2D) - то есть конверсия из автогрессионной модели в диффузионную.
Как это происходит:
1. Берут сильную GPT-подобную модель.
2. Меняют механизм внимания — теперь модель видит весь контекст сразу.
3. Продолжают обучение по диффузионной задаче.
4. Используют разные скорости обучения для разных частей сети, чтобы модель не забыла старое, но научилась новому способу мышления.
⚙️ Что под капотом
▪ Mixture-of-Experts (MoE) - у модели 30 млрд параметров, но реально работают только 3 млрд за раз. Это делает её мощной, но экономной.
▪ Непрерывное дообучение - старые знания не стираются, а “встраиваются” в новый режим.
▪ Огромные батчи - модель учится на больших партиях данных, чтобы стабилизировать обучение, ведь она не обрабатывает все токены сразу.
✔️ Почему это интересно
- Параллельная генерация - текст создаётся быстрее, без пошаговой задержки.
- Меньше затрат - активных параметров всего 3 млрд, при этом качество как у больших GPT.
- Новая архитектура - открывает дорогу гибридным моделям, сочетающим плюсы AR и DLM.
- Полностью открытый код и веса - можно исследовать, изменять, запускать самому.
- Первый серьёзный шаг к самосовершенствующемуся ИИ- модель может не только обучаться, но и помогать в проектировании следующей версии.
Это реально интересный метод, RND1 показывает, что ИИ можно не просто обучать, а перестраивать - менять его саму логику мышления без начала “с нуля”.
Похоже, это может стать фундаментом для систем Recursive Self-Improvement (RSI), когда ИИ способен создавать и улучшать самого себя.
🟠Blog: https://radicalnumerics.ai/blog/rnd1
🟠Code: https://github.com/RadicalNumerics/RND1
🟠Report: https://radicalnumerics.ai/assets/rnd1_report.pdf
🟠Веса: https://huggingface.co/radicalnumerics/RND1-Base-0910
@ai_machinelearning_big_data
#RND1 #RadicalNumerics #AI #DLM #DiffusionModel #MoE #OpenSource
🚀 Острые пузырьки
Партнёрства OpenAI с производителями чипов Nvidia и AMD вызвали критику из-за риска формирования замкнутого цикла финансирования и финансовой нестабильности.
Почему эксперты говорят об «ИИ-пузыре»:
↖️ https://kod.ru/artificial-intelligence-bubble
🫡 Лавочку прикроют
Набирающая популярность модель для генерации видео Sora будет урезана из-за многочисленных жалоб на нарушение авторских прав со стороны правообладателей.
Что изменится:
https://kod.ru/openai-zacensurit-sora
🚨 Уязвимости в Google Gemini: утечка данных и геолокации
В AI-ассистенте Google Gemini нашли три критические дыры. Из-за них злоумышленники могли похищать личные данные и отслеживать местоположение.
Схема атаки простая: хакер внедрял вредоносный промпт, а Gemini выполнял его как обычную команду.
🔹 Gemini Cloud Assist — через prompt-injection можно было атаковать облачные ресурсы и запускать фишинг.
🔹 Gemini Search Personalization Model — баг в персонализации поиска позволял управлять Gemini через историю Chrome.
🔹 Gemini Browsing Tool — давал возможность напрямую выкачивать сохранённые данные.
Подробнее: cybersecuritynews.com/google-gemini-vulnerabilities
#cybersecuritynews
🔥 Новая SOTA среди моделей на 1.5B параметров
QuestA 🤖 показывает двузначный прирост Pass@1 и даже обгоняет ранние 32B-модели:
- AIME24: 72.50% (+10.73%)
- AIME25: 62.29% (+12.79%)
- HMMT25: 41.67% (+10.11%)
🚀 Секрет в обучении: QuestA использует RL с scaffolded-problems — это снимает конфликт между лёгкими и сложными задачами и даёт более масштабируемое рассуждение.
🔓 Всё в открытом доступе:
- Модель: https://huggingface.co/foreverlasting1202/QuestA-Nemotron-1.5B
- Тренировочный пайплайн: https://github.com/foreverlasting1202/QuestA
- Статья: https://arxiv.org/abs/2507.13266
- Блог: https://mercurial-kidney-02d.notion.site/QuestA-Expanding-Reasoning-Capacity-in-LLMs-via-Question-Augmentation-216b21d08abb81a1bcecfe79e7d1e88a?pvs=73
#LLM #Reasoning #AI #SOTA
@data_analysis_ml
🚀 Обновление Giga-Embeddings: лидер ruMTEB и открытая лицензия
Мы выпускаем обновление Giga-Embeddings — 3B модель для преобразования текста в семантические векторы. Идеально для RAG, поиска и кластеризации.
📈 Метрики #1 в ruMTEB (74.1) — уверенный отрыв среди open-source.
🧩 Зачем это вам
• Надёжный RAG без галлюцинаций: точнее извлекает факты из базы.
• Поиск по документам и тикетам, FAQ-боты, дубликаты/кластеризация.
• Быстрый старт в проде: свободная лицензия, коммерческое использование разрешено.
⚙️ Как попробовать за 60 секунд
# pip install sentence-transformers
from sentence_transformers import SentenceTransformer
m = SentenceTransformer("ai-sage/Giga-Embeddings-instruct")
emb = m.encode([
"Как настроить доступ к базе знаний?",
"Инструкция по онбордингу саппорта",
])
print(emb.shape) # (2, D)
Всем привет!
Представляем вашему вниманию семнадцатый выпуск подкаста "Капитанский мостик", в этом разговоре обсуждаются самые актуальные темы в области технологий. Ведущие выпуска - Валентин Малых и Дмитрий Колодезев.
Смотрите видео на каналах ⤵️
ODS VK Video
ODS YouTube
📩 Присылайте новости для обсуждения в канал "Дата-капитаны" в mattermost (авторизуйтесь через ODS.ai).
Напоминаю, что этот канал ведёт дед, начинавший с Pascal, и да, это был очень строгий и хороший язык. И строгость эта была исключительным преимуществом.
https://habr.com/ru/articles/958274/
AIJ Deep Dive – must-attend событие для профессионалов в AI!
Специальный очный трек международной конференции AI Journey для инженеров будущего — для тех, кто создаёт AI своими руками.
Будет два тематических дня:
1️⃣ День Науки (19 ноября) — прорывные исследования, передовые R&D-разработки и глубокий технический разбор решений.
2️⃣ День Бизнеса (20 ноября) — реальные кейсы внедрения AI, практические результаты и оценка эффективности.
✔️ Сообщество тех, кто уже сегодня формирует технологические стандарты завтрашнего дня
✔️ Только реальные кейсы, инсайды и решения
✔️ Нетворкинг и возможность установить контакты с ключевыми игроками рынка и перспективными коллегами
✔️ Постерная сессия научных статей, в том числе уровня А/А*
✔️ Возможность увидеть изнутри, как рождаются прорывные технологии
📄 alphaXiv использовали ❗️DeepSeek OCR, чтобы превратить хаотичный океан научных знаний в упорядоченную библиотеку
С помощью технологии DeepSeek OCR мы извлекли все наборы данных из таблиц и диаграмм, содержащихся в более чем 500 000 научных работ по искусственному интеллекту на портале arXiv. Затраты на реализацию проекта составили 1000 долларов США.
Теперь вы можете отслеживать наиболее актуальные бенчмарки и находить наборы данных, о существовании которых ранее не было известно.
Для сравнения: выполнение аналогичной задачи с использованием технологии Mistral OCR обошлось бы в 7500 долларов США
На следующей неделе мы опубликуем набор данных статей arXiv в формате markdown, обработанных с помощью DeepSeek OCR.
Создан, чтобы предоставить преподавателям LLM высококачественный предварительный учебный ресурс, который не нагружает серверы arXiv ботами для сбора данных.
Посмотрите наши наборы данных и бенчмарки, проиндексированные DeepSeek OCR:
https://www.alphaxiv.org/?datasets=true
🌐 OpenAI представила Atlas - свой новый AI-браузер с памятью и режимом агента.
Atlas полностью интегрирован с ChatGPT и работает на базе ChatGPT Search.
Главная фишка - Agent Mode, который может самостоятельно перемещаться по сайтам, открывать страницы и выполнять задачи прямо в браузере.
Можно запускать несколько вкладок с агентами одновременно.
🧠 Браузер также имеет постоянную память (Memory Recall), он запоминает контекст, прошлые действия и может продолжить с того места, где вы остановились.
Atlas уже доступен для всех пользователей: Free, Plus, Pro, Go и Business.
Для Enterprise и Education доступна бета-версия по разрешению администратора.
📱 Доступен для MacOs. Версии для Windows, iOS и Android - в разработке.
Скоро поделюсь результатами тестов и первыми впечатлениями от Agent Mode.
@ai_machinelearning_big_data
https://chatgpt.com/atlas
#OpenAI #Atlas #ChatGPT #AIbrowser #AgentMode
Всем привет!
Встречайте шестнадцатый выпуск подкаста "Капитанский мостик". В этот раз подкаст проводился вживую, как часть программы Data Fest Siberia 6, обсуждение самых актуальных новостей из мира ИИ прошло в формате открытого диалога с аудиторией Феста 🎉
Ведущие выпуска - Валентин Малых и Дмитрий Колодезев.
Смотрите видео на каналах ⤵️
ODS VK Video
ODS YouTube
📩 Присылайте новости для обсуждения в канал "Дата-капитаны" в mattermost (авторизуйтесь через ODS.ai).
🤯 Ring-1T: открыта первая в мире триллионная модель с размышлениями!
Всего за пару недель компания Ant Group выпустила три мощнейшие модели. Апофеозом стал Ring-1T — первая в мире открытая языковая модель с триллионом параметров, которая обладает продвинутыми способностями к рассуждению.
🚀 Результаты тестирования:
• Математика: Решила 4 из 6 задач на уровне Международной математической олимпиады (IMO), что соответствует серебряной медали.
• Программирование: На уровне ICPC World Finals 2025 решила 5 задач, обогнав Gemini 2.5 Pro.
• Логика: Блестяще справляется с запутанными головоломками на определение правды и лжи.
• Креатив: Пишет увлекательные исторические подкасты и генерирует рабочий код для игр.
📊 Технические детали для экспертовАрхитектура: MoE (Mixture of Experts) с увеличенным количеством активных параметровОбучение: Полный цикл RLHF + RLVR (Reinforcement Learning from Verifiable Rewards)Инновация: Алгоритм IcePop решает проблему расхождения обучения/инференса в MoE через "маскирование градиентов"Инфраструктура: ASystem обеспечивает стабильное обучение через P2P синхронизацию GPU и Serverless Sandbox
Hugging Face | ModelScope
#КитайскийИИ #КитайAI #Ring1T #OpenSource
🖥 Гайд по PostgreSQL для продвинутых разработчиков
PostgreSQL – одна из самых мощных СУБД с открытым исходным кодом. Этот гайд подробно охватывает ключевые аспекты PostgreSQL: от внутренней архитектуры до приёмов оптимизации. Мы рассмотрим администрирование, производительность, расширения, инструменты, а также сравним популярные ORM для Python и Go. В конце приведён список продвинутых вопросов, часто встречающихся на собеседованиях.
🟠Гайд
@sqlhub
Мы решили задачу омографов и ударений в русском языке
Мы опубликовали библиотеку silero-stress для расстановки ударений в обычных словах и омографах:
1️⃣ Расставляет ударения, решает омографы, ставит букву ё;
2️⃣ "Знает" порядка 4М русских слов и словоформ и порядка 2K омографов;
3️⃣ Простановка ударения в обычном 1 слове занимает где-то 0.5 ms, а в предложении на 400 символов с 2 омографами - порядка 30 ms;
4️⃣ Общий размер библиотеки составляет порядка 50 мегабайт (архив весит порядка 30 мегабайт), что является сжатием словарей и всех датасетов примерно в 400 раз;
5️⃣ Опубликована под популярной и простой лицензией (MIT);
6️⃣ Не содержит раздутого кода, лишних библиотек, гигабайтов академических артефактов;
7️⃣ Зависит только от стандартной библиотеки питона и работает на всех последних версиях PyTorch.
Ставим ⬆️ habr.com/ru/articles/955130/
Ставим ⭐️ https://github.com/snakers4/silero-stress
Google не будет исправлять проблему ASCII smuggling в ИИ-помощнике Gemini
Разработчики Google сообщили, что проблема «контрабанды ASCII-символов» (ASCII smuggling) в Gemini не получит исправлений. Такая атака может использоваться для обмана ИИ-ассистента с целью предоставления пользователям фальшивой информации, изменения поведения модели и скрытого отравления данных.
Читать полностью
#xakep
@linux_potok
Привет!
Встречайте четырнадцатый выпуск подкаста "Капитанский мостик", обсуждение новостей из мира ИИ за прошедшую неделю и не только. Выпуск традиционно ведут Валентин Малых и Дмитрий Колодезев.
Смотрите видео на каналах ⤵️
ODS VK Video
ODS YouTube
📩 Присылайте новости для обсуждения в канал "Дата-капитаны" в mattermost (авторизуйтесь через ODS.ai).
всем привет, сегодня-завтра последние дни, когда можно податься с докладом на сибирский ДатаФест 18 октября!
если у вас есть задумка доклада, не стесняйтесь, мы поможем ее довести до продашен-реди состояния, будем рады всех видеть
еще раз ссылка на подачу: https://ods.ai/tasks/speakers_siberia6
🤔Экспериментальная модель 🖥Extract-0 за $196 превзошла 👩💻 GPT-4 и 👩💻 o3 в извлечении данных?
Исследователь Энрике Годой из 🇧🇷Бразилии представил ИИ-модель Extract-0, специализированную LLM с 7 миллиардами параметров, которая демонстрирует новый уровень эффективности в извлечении структурированной информации из документов. Согласно исследованию, данная языковая модель превосходит по производительности популярные универсальные модели, включая GPT-4.1, o3 и GPT-4.1-2025. Ресёрчер ставит под сомнение устоявшуюся парадигму, где доминирующим фактором эффективности считается исключительно масштаб модели.
Ключ к успеху Extract-0 кроется в новаторской трехэтапной методологии обучения, которая позволила достичь высокой точности при минимальных затратах. Процесс включает генерацию 280 128 синтетических примеров данных с сохранением контекстной памяти, параметроэффективную тонкую настройку (LoRA), затрагивающую всего 0.53% весов модели, и обучение с подкреплением (GRPO) с использованием семантической функции вознаграждения. Такой подход позволяет ИИ-агенту понимать смысловую эквивалентность данных, а не простое текстуальное совпадение.
В ходе тестирования на эталонном наборе из 1000 задач по извлечению информации Extract-0 достиг среднего показателя вознаграждения 0.573, значительно опередив GPT-4.1 (0.457) и o3 (0.464).
◀️Для адаптации ❗️ DeepSeek-R1-Distill-Qwen-7B применялся метод Low-Rank Adaptation (LoRA), который изменил всего 0.53% от общего числа параметров модели (40.4 млн из 7.66 млрд).
◀️Изначально базовая модель без дообучения имела средний результат 0.232 и валидность JSON на уровне 42.7%.
◀️После этапа контролируемой тонкой настройки (Supervised Fine-Tuning) производительность модели выросла до 0.507, а валидность JSON достигла 79.9%.
◀️Финальный этап обучения с подкреплением (GRPO) позволил достичь итогового результата в 0.573 со средней валидностью JSON в 89.0%, что представляет собой кумулятивное улучшение на 147.0% по сравнению с базовой моделью.
🦆xAI обвиняет OpenAI в 💣диверсии и 📖краже исходного кода
В самом сердце Кремниевой долины разворачивается драма, достойная шпионского романа. Компания 😎Илона Маска xAI обвиняет своего главного конкурента, OpenAI, не просто в переманивании сотрудников, а в организации целенаправленной стратегической кампании по хищению коммерческих тайн.
xAI заявляет о краже двух главных активов: 🖥всего исходного кода и уникальной стратегии развертывания дата-центров, которую назвали 📄 "секретным соусом".
Как утверждает xAI в иске, в этой истории замешаны 🥷❗️три ключевые фигуры. Один из инженеров (Сюэчэнь Ли) признался в хищении всей кодовой базы xAI, второй (Джимми Фрейтюр) использовал технологию AirDrop для копирования исходного кода на личные устройства, а один из финансовых руководителей передал OpenAI конфиденциальные данные об операционной эффективности компании. OpenAI наняла его с целью получения конфиденциальных данных об операционной эффективности компании.
👍В иске представлены конкретные даты, имена, технологии и цифровые артефакты. У xAI есть вырисовывается весьма серьезная обвинительная доказательная база, вероятно, полученная в результате внутреннего 🕵️форензик-расследования.
Cогласно материалам дела, охота велась целенаправленно, ведь, вербовкой обоих инженеров, находящихся по разные стороны Атлантики, занимался один и тот же рекрутер из OpenAI по имени Тифа Чен, а это указывает на скоординированный характер действий.
👆Представитель OpenAI называет иск xAI "попыткой преследования со стороны господина Маска", пытаясь свести технический и юридический спор к личной неприязни.
✋ @Russian_OSINT
Пост для любителей обучать нейросети на работе, после работы, вместо работы, на выходных, в отпуске, с женой или вместо жены.
На прошлой неделе стартовал Wunder RNN Challenge —соревнование по нейронкам от HFT-фонда Wunder Fund.
Участникам предстоит создать модель, предсказывающую следующее состояние рынка на основе последовательности предыдущих состояний. Именно с такими задачами каждый день работают кванты.
Когда
15 сентября — 1 декабря
Призовой фонд
$13,600
Вы будете работать с реальными биржевыми данными.
Победители получат денежные призы, возможность пообщаться с нашими квантами, а главное — утонченное интеллектуальное удовлетворение от решения сложной задачи.
Wunder Fund с 2014 года занимается HFT, высокочастотным алгоритмическим трейдингом. Мы торгуем на многих биржах по всему миру — как традиционных, так и криптовалютных. Наш дневной торговый оборот превышает $10 млрд.
>_ Участвовать