مطالب خوب و بهدردبخور در حوزهی هوش مصنوعی و پردازش زبان طبیعی! شکرشکن شوند همه طوطیان هند زین قند پارسی که به بنگاله میرود اگر انتقاد، پیشنهاد و یا مطلب مفیدی (لینک، پست و ...) داشتید: @AliAkbarBadri @mmsamiei @MmahdiAghajani
معرفی دوره آموزشی و مسابقه rayan
• دانشگاه شریف، مسابقه و دوره پیشرفته و جالبی با نام RAYAN AI در زمینه اعتمادپذیری در یادگیری عمیق (Trustworthiness in Deep Learning) برگزار میکنه. این مسابقه ۳۵ هزار دلار جایزه نقدی داره (درست خوندید) و پاییز برگزار میشه.
• دو تا دوره با اساتید خفن (مثل دکتر رهبان، دکتر سلیمانی و دکتر نجفی و ...) هم برگزار میکنه؛ یکی دوره مقدمه یادگیری ماشین و یادگیری عمیق و دومی هم اعتمادپذیری در یادگیری عمیق.
• دورهها تمرین و پروژه دارند، هم برای مسابقه آماده میشید و هم گواهی پایان دوره از دانشگاه شریف میگیرید. و واقعا سیلابس خوبی دارند (تصویر دو و سه را ببینید).
• دقت کنید که تا ۲۰ تیر (سه روز دیگه) وقت برای ثبت نام دورهها دارید و از ۲۴ تیر تا ۲۸ شهریور برگزار میشه. هزینه ثبتنام هر دوره فقط ۱۰۰ هزار تومنه و مجازی هم هست. تکرار میکنم که ۳۵ هزار دلار جایزه مسابقهست!
پ.ن. ما دوره آموزشی، مسابقه و ایونتی در کانال قرار میدیم که خودمون هم دوست داشته باشیم در اون شرکت کنیم.
لینک ثبت نام دوره آموزشی و مسابقه:
https://rayancup.ir/ai
کانال تلگرام:
@Rayan_AI_Course
#other
@nlp_stuff
اندر تفاوتهای ML در ریسرچ و پروداکشن
تا حالا زیاد درباره تفاوتهای نگاه در یادگیری ماشین به جهت ریسرچ و پروداکشن صحبت شده. اما در این پست به بهانه معرفی کتاب Designing Machine Learning Systems میخواستیم که خیلی جمع و جور و خلاصه این تفاوت نگاه رو به رشته تحریر دربیاریم. همونطور که در تصویر دوم ضمیمهشده مشخصه (این جدول برگرفته از فصل اول این کتابه) یکی از ملموسترین تفاوتها بحث اولویت محاسباتیه که در ریسرچ، بیشتر تمرکز بر روی کوتاهتر کردن زمان Train گذاشته میشه اما در پروداکشن بیشتر تمرکز بر روی زمان inference کوتاهه. یا مثلا بحث distribution shiftهای مداوم که در یک مساله تحقیقاتی شاید کمتر اتفاق بیفته.
اما به نظر مهمترین تفاوت که عمدتا باعث fail شدن پروژههای ML در صنعت میشه همون سطر اول این جدوله که شاید برای افراد ناملموستر باشه. بله؛ وجود افراد در سازمان با نگاههای متفاوت که هر کدوم به نوعی هدف و سهمی از این نوع پروژهها دارند، مهمترین تهدید و همزمان مهمترین فرصت برای این پروژههاست. اگر بتونیم به جای تمرکز بر متریکهای تکنیکال بر روی بهبود متریکهای بیزنسی تمرکز کنیم این تهدید رو تبدیل به فرصت کردیم و در غیر این صورت باید بریم خونههامون.
در آینده منتظر پستهای بعدی از این کتاب باشید.
لینک کتاب:
https://www.amazon.com/Designing-Machine-Learning-Systems-Production-Ready/dp/1098107969
#book
@nlp_stuff
دادگان PCoQA: Persian Conversational Question Answering
دادگان (دیتاست) جدیدی به نام PCoQA منتشر شده که شامل ۹۰۲۶ پرسش از ۸۷۰ صفحه ویکیپدیاست. هر گفتمان (conversation) روی یک صفحه ویکیپدیا انجام شده و طول هر گفتمان هم حدودا ۱۰ است. به منظور ارزیابی انسانی شبیه دادگانهای گذشته مثل SQuAD و CoQA، برای هر پرسش در مجموعهی ارزیابی و تست چندین پاسخ دراومده و دقت F1 انسانها و چندین مدل بر روی پاسخدهی به این پرسشها بدست اومده که برای انسان حدودا ۸۶ درصده.
دو نوع مدل روی این داده تست شده. یکی با فقط فاینتیون کردن چند مدل زبانی ترنسفورمری روی همین دادگان و یک مدل دیگه هم با فاینتیون کردن مدل روی دادگان قبلی QA و بعد فاین تیون روی این دادگان و بعد تست گرفتن.
دو خصوصیت مهم این دیتاست:
- پرسشهای این دادگان بیشتر open ended هستند، بر خلاف قبلیها مثل CoQA و SQuAD که بیشتر به شکلی مصنوعی بر روی named entity و noun phrase متمرکزند.
- سعی شده lexical overlap تا حد امکان کاهش داده بشه تا کیفیت بالاتر بیاد.
لینک مقاله:
arxiv.org/abs/2312.04362
لینک گیتهاب:
github.com/HamedHematian/PCoQA
#dataset
@nlp_stuff
بهبود عملکرد LLM با نشوندادن Chain of Thought غلط
مدلهای زبانی بزرگ با این که کلی از مسائل حوزه پردازش زبان رو درنوردیدند ولی همچنان در برخی مسائل با فاز reasoningطور (مثل مثلا حل مسائل ریاضی) دچار مشکلات جدی هستند. یکی از راهحلهای پیشنهادشده برای بهبود عملکرد این مدلها روی این مسائل، راهکار Chain-of-Thought Prompting (به اختصار CoT) هست. تو این راهکار وقتی میخوایم یک مساله را به صورت few-shot به LLM توضیح بدیم عوض این که در exampleهامون صرفا جواب آخر رو بنویسیم و میایم و مرحله به مرحله نحوه رسیدن به جواب رو توضیح میدیم و این جوری مدل هم وقتی میخواد به کوئری ما پاسخ بده به نوعی مجبور میشه که مرحله به مرحله جواب رو بنویسه. آزمایشات نشون داده که باعث میشه درصد جوابهای پایانی درستی که میده بیشتر بشه.
حالا یک مقاله اومده و یک ایده به نام contrastive chaint of thought prompting رو مطرح کرده. تو این ایده، علاوه بر این که CoT درست به مدل داده میشود بهش CoT اشتباه هم نشون داده میشه و آزمایشات مقاله نشون میده که این ایده نشون دادن CoT غلط در کنار CoT باعث میشه تا عملکرد LLM باز هم بهبود پیدا کنه.
لینک مقاله:
https://arxiv.org/abs/2311.09277
#paper
#read
@nlp_stuff
ایجاد optical illusion با مدلهای دیفوژنی
در چند روز گذشته، ترند ایجاد تصاویر دارای خطای دید با مدلهای دیفوژنی تبدیل متن به تصویر بالا گرفته. تو این مساله، مدل با ورودی گرفتن یک پرامپت (مثل مثلا درختها تو پاییز) و البته یک تصویر پایه دیگه (مثل تصویر مریم میرزاخانی)، مدل میاد و جوری تصویر تولید میکنه که اصلش همون پرامپت اصلی (یعنی درختهای پاییزی) هست ولی وقتی که چشماتون رو اندکی چپ میکنید یا از دور به تصویر نگاه میکنید اون تصویر پایه (مثل مریم میرزاخانی) رو میتونید ببینید. ما هم چند نمونه جالب و البته نمونههایی که خودمون تولید کردیم رو اینجا گذاشتیم. اگه خواستید خودتون هم امتحانش کنید میتونید از اینجا امتحان کنید:
https://huggingface.co/spaces/pngwn/IllusionDiffusion
#link
@nlp_stuff
مخزنی از مقالات کلیدی هوش/یادگیریماشین به ترتیب سال
آقای آمان چادها، اومدن و در این لینک لیستی کامل و جامع از مقالات کلیدی در حوزههای بینایی کامپیوتر و پردازش متن و صوت و سیستمهای توصیهگر و یادگیری مولتی مودال و ... رو به ترتیب سال گذاشتند. اما تمام هنر آمان آقا به این جا خلاصه نمیشه و ایشون چیزهای دیگه رو هم تو سایتشون قرار دادند که شامل یکسری لکچرنوتهای نیکو از کورسهای معروف، لکچرنوتهای راجع به کتابخانههای مربوط به کارهای هوش مصنوعی، لیستی از بلاگها و کورسها و یوتیوبهای دیدنی و خلاصه هر چیزی که مربوط به هوش میشه و باید خوند و دید، رو قرار دادند. قشنگ استفاده کنید و حظش رو ببرید.
لینک لیست مقالات:
aman.ai/papers
لینک سایت:
aman.ai
پینوشت: با دنبالکردن #coach میتونید منابع آموزشی معرفیشده رو بیابید.
#coach
#link
@nlp_stuff
معرفی Toolformer
مدلهای زبانی، در حل وظایف جدید با تنها چند مثال یا دستورالعمل متنی تواناییهای قابل توجهی دارند، به ویژه در مقیاس بزرگ. در عین حال، برای عملکردهای پایهای مثل محاسبات یا جستجوی factها دچار مشکل هستند، جایی که مدلهای سادهتر و کوچکتر بسیار عالی عمل میکنند. این مقاله با معرفی Toolformer، نشون میده که مدلهای زبانی چطوری میتونند خودشون رو با استفاده از APIهای ساده، آموزش بدن تا بهترین راهکار رو داشته باشند. مدل Toolformer، آموزش میبینه که تصمیم بگیره کدام API رو فراخوانی کنه، چه زمانی اونها رو فراخوانی کنه، چه آرگومانهایی رو منتقل کنه و چطوری به بهترین شکل از ترکیب نتایج برای پیشبینی توکن بعدی استفاده کنه.
این APIهای گنجانده شده در Toolformer شامل ماشین حساب، سیستم پرسش و پاسخ، موتور جستجو، سیستم ترجمه و یک تقویمه. آموزش این مدل به صورت خودبخودی و خودآموزه، که تنها به چند تا نمونه برای هر API نیاز داره. یعنی با استفاده از تعداد انگشت شماری نمونههای نوشته شده توسط انسان از فراخوانی یک API، به مدل این امکان داده میشه که برای یک مجموعه دادهی زبانی بزرگ، کاندیدهای فرخوانی API رو مرتبط با محتوای متن ایجاد کند (in-context learning). سپس با استفاده از یک تابع self-supervised loss مشخص میشه کدام فراخوانی APIها واقعا به مدل برای پیشبینی توکن بعدی کمک میکنه. در نهایت مدل روی فراخوانهای API ای که مفیدند finetune میشه.
مدل Toolformer، عملکرد zero-shot رو برای مدل GPT-J با 6.7B پارامتر به طور قابل توجهی بهبود می بخشه و باعث میشه حتی از مدل بسیار بزرگتر GPT-3 در طیف وسیعی از وظایف مختلف پاییندستی (یا همان downstream tasks) بهتر عمل کنه، بدون اینکه تواناهایی مدل سازی زبان اصلی را ازدست بده.
لینک مقاله:
https://arxiv.org/abs/2302.04761
پ.ن. این پست را خانم وحیدی درست کردند و به کانال فرستادند. شما هم اگر پست خوبی دارید بگید تا به اسم و با لینک به لینکداین خودتون منتشر کنیم.
#read
#paper
@nlp_stuff
قلب چت جیپیتی: هوش مصنوعی با فیدبکهای واقعی
قبلا در این پست (/channel/nlp_stuff/313) به توضیح مختصری از داستان ChatGPT پرداخته بودیم.
حالا در یک بلاگ پست قصد داریم قلب آموزش این مدل یعنی Reinforcement Learning from Human Preferences رو توضیح بدیم.
لطفا با بقیه هم به اشتراک بذارید.
لینک پست ویرگول:
https://virgool.io/overfit/rlhf-vkpgfist80nt
لینک مقاله:
https://arxiv.org/abs/1706.03741
#read
#blog
@nlp_stuff
اسپارک؛ سهل و ممتنع!
اگر در حوزه تحلیل دیتا کار کرده باشید قطعا با ابزارهای data manipulation مانند pandas یا spark کار کردید. در این پست قصد داریم رشته بلاگی رو به شما معرفی کنیم که مفاهیم پایهای spark رو به شما یاد میده. فهم این مفاهیم کمک میکنه که کوعریهای بهتری در اسپارک بزنید و یا علت کند اجرا شدن برخی از کوعریها رو بفهمید. همونطور که میدونید spark در دوحالت cluster mode و client mode اجرا میشه که معمولا برای کارهای تحلیلی که خیلی پروداکشنی نیست از همین حالت client mode استفاده میکنیم که در واقع تنها کاری که برای بهره بردن از اسپارک باید انجام بدید نصب پکیج pyspark بر روی سیستمتون هست (درست مثل pandas). حسن بزرگ اسپارک اینه که محاسبات بر روی دیتای حجیم رو میتونه بین چندین executor بشکونه و محاسبات هر executor توی ram اجرا میشه و executorها نتایج کارشون رو با استفاده از ارتباط با driver به اشتراک میذارن تا نتیجه نهایی بدست بیاد (همونطور که متوجه شدید معماری کل اسپارک حالت master/slave داره) این وسط با کانفیگهایی که روی اسپارک انجام میدید میتونید حداکثر استفاده از ram رو تعیین کنید تا خیالتون راحت باشه که همه ram سیستم شما مورد استفاده قرار نگیره. این رشته بلاگ ابتدا مفاهیمی مانند driver و executor و scheduler رو توضیح داده و سپس به سراغ توضیح پارتیشنها رفته. پارتیشنها بخشهایی از دیتا هستند که میتونند به صورت توزیعشده باشند و یا به صورت موازی پردازش بر روی اونها انجام بگیره. در واقع هر executor در لحظه میتونه فقط یک پارتیشن از دیتا رو پردازش کنه ولی driver میتونه چندین executor رو به کار بگیره برای اینکه پردازش دیتا همزمان روی چندین پارتیشن انجام بشه.
این رشته بلاگ توضیح داده که برخی از transformationها یا کوعری ها حالت narrow دارند که به این معنیه که انجام اونها منجر به repartition شدن دیتا نمیشه مانند map یا filter ولی برخی دیگه wide transformation هستند که منجر به repartition شدن دیتا میشه مانند groupby که wide transformationها میتونند کوعریهای سنگینتری باشند. (همونطور که میدونید کوعریها در اسپارک lazy هستند به این معنی که در لحظه اجرا نمیشند بلکه مواقع خاصی مانند تبدیل نتایج به list و یا ذخیره کردن داده اجرا میشند که این به اسپارک اجازه میده از زنجیره کوعریها یک گراف محاسباتی بسازه و اون رو قبل از اجرا بهینه کنه)
در نهایت اومده و memory management در اسپارک رو توضیح داده که یکی از مهمترین و البته پیچیدهترین قسمتهای فهم اسپارک هست و گفته که memory management در سطوح مختلف قابل تعریفه مثل driver memory و یا executor memory و ...
توصیه میکنیم حتما این رشته بلاگ رو بخونید و سعی کنید از این به بعد به جای pandas از spark استفاده کنید که وقتی دیتای حجیم دیدید هول نکنید!
لینک رشته بلاگ:
https://luminousmen.com/post/hadoop-yarn-spark
#handsOn
#read
#blog
@nlp_stuff
و اکنون GPT-4
و سرانجام لحظاتی پیش Open-AI رسما انتشار مدل GPT-4 را تایید کرد. فعلا تحولات اخیر در رابطه با این مدل به صورت خلاصه وار اینه که:
- در تسکهای تستهای انسانی آکادمیک (مثل GRE) از مدلهای قبلی مثل GPT-3 بهتره و در خیلی از تسکها در صدکهای بالایی قرار داره که یعنی از بیش از نیمی از انسانها هم برتره. این رو به این معنا تفسیر کردند که این مدل تواناییهای Reasoning قابل توجهی داره.
- مولتی مداله، یعنی میتونه تصویر رو هم در کنار prompt ورودی بگیره و با توجه به اون پرامپت روی اون تصویر توضیحی بده. مثلا بهش میگید تو این عکس چه میبینی و میاد براتون توضیح میده. در خیلی از تسکای پرسش و پاسخ تصویری با این که دقتش به حد SOTA نمیرسه اما باز هم قابل قبوله و از مدلهای مولتی مدال قبلی بهتر داره نتیجه میگیره (وقتی میتونید ارزش این کار رو درک کنید که دقت کنید که به صورت Zero-Shot داره این کار رو انجام میده!)
- قابلیت شخصیسازی و فرمانپذیری سبک پاسخ دادن داره! در واقع این امکان وجود داره که شما با پیامهاتون به GPT بفهمونید که دوست دارید با چه سبکی بهتون پاسخ بده. یک مثال جالب خود Open-AI تو دموش گذاشته که به طرف میگه فرض کن سقراط هستی و در نقش معلم و هیچ وقت به دانش آموزات پاسخ رو نمیدی بلکه سعی میکنی با سوال پرسیدن اونها رو به جواب برسونی و بعد به طرز جالبی سعی کردن که باهاش یک معادله دو مجهولی رو حل کنند!
- همچنان با همون تسک ساده پیشبینی کلمه بعدی آموزش دیده اما با تاثیرپذیری از Chat-GPT اینجا هم اومدن و از RHLF برای فاینتیونکردن GPT-4 استفاده کردند.
برای توضیحات بیشتر اینجا را ببینید:
https://openai.com/research/gpt-4
@nlp_stuff
مسابقهی رتبهبندی نتایج جستجوی ترب
این روزها یک مسابقهی درست و درمون رو شرکت ترب داره برگزار میکنه: «بهبود رنکینگ جستجو در ترب با استفاده از دیتای جستجوی کاربرها». اصطلاحا به این مسئله learning to rank گفته میشه. در این مسئله، اطلاعات سرچ کاربرها شامل عبارت جست و جو شده، نتایج نشان داده شده به اونها، کلیک کاربرها و همچنین نام و قیمت محصولات به شما داده شده و از شما خواسته شده که در ازای یک عبارت جست و جو، n محصول رو پیشنهاد بدید. بنابراین علاوه بر مسئله learning to rank با مسائل فضای information retrieval و روش های مختلف استخراج ویژگیهای متنی از محصولات سرو کار دارید. البته اطلاعات امبدینگ تصاویر محصولات هم چاشنی کار میشه.
شروع مسابقه از ۱۵ بهمن اتفاق افتاده و تا ۱۵ اسفند برای ثبتنام وقت دارید. یه سری جایزهی تپل هم گذاشتند. پس توصیه میکنیم این مسابقه رو شرکت کنید و خودتون رو به چالش بکشید!
لینک ثبت نام و توضیحات رویداد:
https://tdc.torob.com
پ.ن. اگر رویداد جوندار دیتایی مثل همین رویداد دارید، ندا بدید که روی کانال بگذاریم تا ملت بهره ببرند.
#other
@nlp_stuff
حس پیادهسازی GPT را ندارید؟ حق دارید، آموزش ندیدهاید.
نقل قولی منتسب به کنفوسیوس هست که میگه میشنوم و فراموش میکنم، میبینم و یادم میماند، انجام میدهم و میفهمم. در همین راستا، بارها پرسیده شده که ما فلان مقالات دیپ لرنینگی رو خوندیم ولی اون قدر که باید تاثیر این خوندن رو حس نمیکنیم و باید چه کنیم؟ پاسخ اینه که باید کد زد، پیادهسازی کرد و پروژه دستگرمی انجام داد تا رو ریل افتاد. اما اینجا یک مساله مرغ و تخممرغی به وجود میاد که آدم از کجا میتونه بفهمه اصلا چی رو باید بزنه و این زدنش درست بوده یا نه و اصلا چه جوری از همین کد زدنش یاد بگیره؟
آقامون آندره کارپثی از غولهای هوش مصنوعی، پس از جدایی از تسلا، در ایام فراغت خودش زده تو کار آموزش. از اونجایی که در چند وقت اخیر هم ترند ChatGPT در میون طیف وسیعتری از مردم (و نه صرفا هوشمصنوعیکارا) داغ شده ایشون ویدئویی دو ساعته ضبط کرده و در اون به آموختن پیادهسازی مدل GPT (البته از سایز کوچیکش در حدی که قابل آموزشدادن روی کولب باشه) و آموزشش روی دیتاست نوشتههای شکسپیر پرداخته. این ویدیو بسیار ارزشمنده و کارپثی از ب بسم الله که توکنایزیشن باشه تا اجزای معماری ترنسفورمر رو جز به جز با زبان شیوا و بیان جزییات لازم و حکمت وجودیشون توضیح داده و همزمان پیادهسازی هم میکنه و تازه در انتها هم گریزی به ChatGPT زده و در مورد اون هم صحبت کرده. دیدن این ویدیو رو حتما در اولویتهاتون قرار بدین و قطعا از صرف زمان برای اون ضرر نخواهید کرد.
در ضمن اقای کارپثی قبل از این هم یک سری ویدیو تحت عنوان Neural Networks: Zero to Hero تدارک دیده و در اون به توضیح و پیادهسازی چیزای پایهایتر مثل توابع فعالسازی و BackPropagation پرداخته و این ویدیو ساخت GPT اش هم به جزیی از همین پلی لیسته. حالا که تا اینجا اومدید این پلیلیست نابش رو هم از دست ندید.
ویدیو ساختن GPT از صفر با کارپثی:
https://www.youtube.com/watch?v=kCc8FmEb1nY
پلیلیست Neural Networks: Zero to Hero از کارپثی:
https://www.youtube.com/playlist?list=PLAqhIrjkxbuWI23v9cThsA9GvCAUhRvKZ
#coach
#watch
@nlp_stuff
یادگیری قلقهای ریسرچ هوش با کورس CS197 هاروارد
عموما اگر هم صنعت و هم آکادمی را تجربه کرده باشید این تفاوت را مشاهده کردهاید که به نظر فضای صنعت فضای سرراستتری است و روند آغاز تا انجام یک تسک یا پروژه بسیار شفافتر و آشناتر است تا روند اجرای یک پژوهش در آکادمی. به علاوه در فضای صنعت نیروها به علت پیشزمینه مهندسی که دارند آشنا به رعایت یکسری قواعد و الگووارههایی هستند، حال آن که این قواعد و الگوها در سمت ریسرچ به صورت مدونی وجود ندارد. حال آقای Rajpurkar استادیار دانشگاه هاروارد آمده و یک کتاب الکترونیکی از درسی که تحت عنوان "تجربیات پژوهشی هوش مصنوعی"در هاروارد ارائه کرده، منتشر کرده است. در این کتاب راجع به مباحثی همچون استفاده درست و موثر از python و pytorch و lightning و HF و streamlite و vscode و git و ... توضیحات خوبی داده شده است. اما این کل ماجرا نیست، بلکه کتاب در ادامه صحبت کرده که چگونه میتوان به صورت سیستماتیک مقالات را خواند، ایدههای جدید زد، یک مقاله را ساختاربندی و منتشر کرد و اسلایدهای باکیفیتی ساخت. اما باز هم این تمام ماجرا نیست و راجپورکار برایمان راجع به نحوه مدیریت زمان و انرژیمان و همچنین نحوه مدیریت تعاملاتمان با استاد راهنما و یا سایر اعضای تیم نیز توضیح داده است. این منبع عالی را از دست نباید داد.
لینک کتاب:
https://docs.google.com/document/d/1uvAbEhbgS_M-uDMTzmOWRlYxqCkogKRXdbKYYT98ooc
#link
#coach
#course
@nlp_stuff
در مورد chatGPT، مکانیزم RLHF و راهی که با InstructGPT طی شد
احتمالا این سوال که چطوری chatGPT بوجود اومده ذهن شما رو درگیر کرده باشه. قبل از پرداختن به این سوال باید اول پرسید Open-AI دقیقا با چه نیازی به GPT-3 راضی نشد و به chatGPT رسید؟
پاسخ اینه که در واقع GPT-3 از روی Text موجود در اینترنت آموزش دیده بود. برای ساخت معماری این شبکه از Decoder استفاده کردند؛ پس تسک اینه که وقتی یه جمله بهش میدی کلمات بعدی رو حدس بزنه. اما با این ساختار آموزشی و این نوع دیتا هیچ تضمینی وجود نداشت که اون جملاتی که در ادامه Predict میکنه لزوما دارای حقیقت باشه یا جملات سمی و توهمی یا حتی توهین آمیز نباشه. این اولین نیاز بود. نیاز دوم این بود که بتونه دستور و خواستهای که یوزر از طریق ورودی میده رو متوجه بشه و چیزی رو که یوزر میخواد رو تولید کنه. یعنی ساختار آموزش بجای «بقیهاش رو تو بگو» به ساختار ارباب رعیتی «این کاری که میگم رو بکن» تبدیل بشه. برای این دو نیاز open-AI مدل خفنی رو توسعه داد و اسمش رو گذاشت: «InstructGPT».
برخلاف تصور، chatGPT مستقیم از روی GPT-3 ایجاد نشده. بلکه از نظر open-AI راه chatGPT از fine-tune کردن InstructGPT میگذشته. که با اصلاح ساختار آموزش و ارایه یک روش آموزشی خیلی خفن InstructGPT رو توسعه دادند. و بعد از این مدل به chatGPT رسیدند. جالب اینجاست که اصل زیباییهای خلقت توی InstructGPT جمع شده. و از InstructGPT تا chatGPT خیلی مسایل فنی خاصی رخ نداده.
برای ساخت InstructGPT اول اومدن در کمال ناباوری GPT-3 رو تبدیل به تسک Supervised کردند. تمام Promptهایی که ملت روی GPT-3 داشتند رو به یه سری انسان دادند و ازشون خواستن پاسخش رو بنویسند (دیوونه خونه ست). و بعد از روی این سوال و جواب، یه مدل توسعه دادند. ماجرا از اینجا تازه شروع میشه. در ادامه فرایند از یه مکانیزمی استفاده کردند که اسمش رو open-AI گذاشته RLHF. یا همون Reinforcement Learning Human Feedback.
فرایند RLHF به این صورته:
- اول به ازای هر Prompt، از مدلهای Base-Line چندین خروجی میگیریم و خروجیها رو به انسان میدیم تا برامون از بهترین تا بدترین جواب Sort کنه. (در اینجا مدلهای Base-Line شامل GPT-3 میشه و اون مدل Supervised). و بعد از طریق این دیتای باارزش (ترتیب بندیِ نتایج مدلها بر اساس ترجیح انسان)، یک Reward Model توسعه میدیم. در واقع اینجا با این مدل داریم اون Functionی رو مدل می کنیم که معمولا یا Rule Based بود یا انسان.
- در مرحله بعد مدل GPT-3 رو تبدیل به یک مدل RL میکنیم. و به ازای هر Prompt در دیتابیس ازش خروجی می گیریم. خروجی رو میدیم به Reward Model و از Reward محاسبه شده برای آپدیت Policyهای مدل استفاده می کنیم.
بنظرم تو این روش کار یدی و کار علمی-مهندسی در یک تعادل جذابی قرار داره. از یه طرف تبدیل کردن یه مدل زبانی به یک مدل RL بنظر خفن میاد و احتمالا بیشتر در آینده شاهدش باشیم. از طرفی، جایی که تصور نمی شد انسان حضور داشته باشه، از انسان استفاده شد. و در آخر هم با Reward Model زیبایی رو بر ما تمام کردند و در جایی که حضور انسان یا Rules پذیرفته شده بود اثبات کردند میشه مدلی ساخت که ترجیحات انسان ها رو مدل کرد و خلاصه که با RLHF نمایش زیبایی از تعامل انسان و ماشین رقم زدند.
برای مطالعه عمیق تر:
https://openai.com/blog/instruction-following/
https://openai.com/blog/deep-reinforcement-learning-from-human-preferences/
https://arxiv.org/abs/2203.02155
پ.ن: با تشکر از آقای اسماعیلیان که این مطلب رو برای ما ارسال کردند. شما هم اگه مطلب به دردبخوری داشتید برای ما بفرستید که با اسم خودتون در کانال منتشر کنیم.
#read
#paper
@nlp_stuff
اعتدال پیشه کن حتی در آموزش تخاصمی مدل!
محققان نشون دادند که adversarial training به عنوان مؤثرترین راهبرد دفاعی در برابر حملات adversarial examples است که قبلا در موردش در حوزه تصویر در این پست (/channel/nlp_stuff/297) صحبت کرده بودیم. به صورت ساده یک حمله موفق زمانی اتفاق میافته که ما بتونیم یکی از کلمات جمله ورودی رو با مترادفش جابجا کنیم (معنای جمله تغییر نکنه!) به نحوی که خروجی مدل تغییر کنه. در این حالت ما موفق شدیم یک حمله synonym attack به مدل بزنیم و در اصطلاح اون رو گول زدیم.
حالا برای اینکه ازین نوع اتفاقات کمتر بیافته باید مدل رو با روش آموزش خصمانه یا همون adversarial training مستحکم کرد. همونطور که گفتیم آموزش خصمانه توسط adversarial examples انجام میشه که در این مقاله اونها رو به دو دسته کلی تقسیم کردند:
۱- مثالهای متخاصم سنتی (Traditional adversarial examples یا Fickle adversarial examples): به روشی گفته میشه که با یک تغییر کوچک در ورودی (جوری که معنا عوض نشود) سعی در گیج کردن مدل به نحوی داره که پیشبینی مدل متفاوت از قبل بشه. مثلا استفاده از incessant بجای continued در جمله
Employers have continued to operate motor vehicles, and that's all that matters.
۲- مثالهای متخاصم متضاد (Obstinate adversarial examples): برعکس نوع قبلی در این روش یک ورودی به نحوی عوض میشه که پیشبینی مدل رو حفظ میکنه اما معنای واقعی ورودی رو متحول میکنه. مثال: استفاده از employees بجای employers در همان جمله بالا.
حالا این مقاله داره خودش رو میکشه که بگه بابا اگه فقط از مثالهای نوع اول استفاده کنید ممکنه مدلتون آسیبپذیر بشه! دلیلش هم اینه که در متن، مثالهای نوع اول معمولاً با محدودیت تشابه کسینوس ایجاد میشن تا نمایشهای اصلی و جمله تغییر کرده (perturbed sentence) رو به نزدیک بودن در فضای embedding تشویق کنند. در حالی که، این روش اندازهگیری شباهت، ممکنه معنای واقعی رو حفظ نکنه و مدل، نمایشهای ضعیفی رو در طول آموزش خصمانه یاد بگیره! به زبان دیگه اگه مدل با مثالهای مترادف و سنتی به گونه ای آموزش داده بشه که در برابر تغییر محدود ε (مثلا کلمات مترادف) مقاوم باشه، ممکنه نسبت به تغییرات کوچک در مثالهای دیگه (مثلا کلمات متضاد که اصلا معنی رو به کل عوض میکنه)، بسیار بیتفاوت بشه!
در ادامه، نویسندگان یک روش مستحکم جدید ارائه میدهند به اسم Balanced Adversarial Training (BAT) که از هر دو نوع مثالها در آموزش خصمانه مدل استفاده میشه. ایده، استفاده از contrastive learning هست بطوری که فاصله بین جفت های مثبت (مترادفها) رو به حداقل برسونیم و فاصله بین جفت های منفی (متضادها) رو به حداکثر برسونیم. مقاله دو ورژن از روش پیشنهادیش به نامهای BAT-Pairwise و BAT-Triplet داره. در BAT-Pairwise سعی میکنه فاصله بین جفتهای مثبت و منفی رو مستقل از جمله ورودی بهینه بکنه ولی توی BAT-Triplet یک رویکرد مثلثی داره که از ورودی به عنوان لنگر مثلث استفاده میشه. در واقع در ورژن دوم سعی بر این هست که فاصله بین جفتهای مثبت و ورودی اصلی کوچکتر از فاصله جفتهای منفی و ورودی اصلی باشه (با یک حداقل مارجین m).
در ضمن نویسنده مقاله تاکیید داره که این یک trade-off هست و باید اعتدال در استفاده از هر دو نوع مثالها حفظ بشه تا مدل در عینحالی که نسبت به مترادفها خروجیش عوض نمیشه در برابر متضادها یا چیزایی که معنی رو عوض میکنند هرچند کوچک هشیار باشه!
در انتها گفته ما مدلهای BERT و RoBERTa رو روی ۲ تسک مختلف با آموزش SAFER برای ۱۵ ایپاک آموزش میدیم. سپس نرخ موفقیت حمله (ASR) رو برای حملات مترادف (fickleness) و متضاد (obstinacy) در هر دوره آموزشی اندازه میگیریم که نتایجشون نشون میده نرخ موفقیت حملات، کمتر از روشهای سنتیه.
پ.ن: با تشکر از آقای احسان برخوردار که این مطلب رو برای ما ارسال کردند. شما هم اگه مطلب خوبی داشتید برای ما بفرستید و تعارف کنید.
لینک مقاله:
https://arxiv.org/abs/2210.11498
#read
#paper
@nlp_stuff
سفت کردن جای پا با فریمبندی درست مسائل ML
در ادامه رشتهپستها از کتاب Designing Machine Learning Systems با یک موضوع مهم از فصل دوم این کتاب در خدمتتون هستیم. فریمبندی درست مسائل در حوزه ML میتونه درصد موفقیت پروژهها رو در این حوزه تا حد زیادی بالا ببره. برای فریمبندی میتونیم به این شکست فکر کنیم که چه نوع ورودی باید به مدل بدیم (input features)، چه خروجی باید بگیریم (target labels) و انتظار داریم چه چیزی رو مدل یاد بگیره (objective functions).
درباره مورد اول و دوم یک چاله رایج وجود داره و اون هم وابسته کردن مدل به مفاهیمیه که متغیر هستند. کتاب درباره نوع خروجی دادن مدل یک مثال میزنه و اون هم مساله تشخیص اپ بعدیای ست که کاربر بر روی اون در یک اپاستور کلیک میکنه. یک مدل اولیه میتونه این باشه که خروجی مدل رو یک وکتور به اندازه سایز تمام اپها درنظر بگیریم و مدل با دادن فیچرهای ترجیحات کاربر، حدس بزنه که احتمال کلیک بر روی هر یک از اپها چقدر هست. با این فریمبندی عملا سایز خروجی مدل به تعداد اپهای حاضر بر روی اپ استور bind شده که میدونیم با نرخ بالایی تغییر میکنه. همچنین مساله شبیه یک multi class classification شده که مسالهای به مراتب سختتر از binary classification است. شکل درست کار در این جا میتونه ورودی دادن فیچرهایی از ترجیحات کاربر و فیچرهای اپها به صورت توامان با هم باشه و از مدل بخوایم که بگه فلان اپ رو کاربر کلیک میکنه یا نه (طبق تصاویر در اینجا موقع inference نیاز داریم که به تعداد اپها مدل رو صدا بزنیم که قابلیت موازیسازی داره و مشکلی ایجاد نمیکنه ولی در عوض خروجی باینری برای مدل داریم و ابعاد خروجی متغیر نیست).
با این تغییر همچنین نیاز نیست برای adopt شدن مدل با هر اپ جدید، حتما retrain انجام بشه و حتی چالش cold start برای اپهای جدید هم تا حدی با الگویابی مدل از اپهای قبلی که شبیه اپهای جدید هستند، میتونه بهتر بشه.
همین چاله برای فیچرهای ورودی هم میتونه پیش بیاد که البته کتاب بهش اشارهای نمیکنه اما با کمی فکر کردن میتونیم مثالهای مختلفی براش پیدا کنیم. مثلا ممکنه شما در مسالهتون فیچری داشته باشید که انواع مختلف واکنشهای کاربر رو بخواید بشمارید و ممکنه مثلا واکنشهای مثبت، انواع مختلفی داشته باشند که اثر یکسانی در بیزنس دارند اما بسته به برخی تصمیمات دیزاین یا بیزنس کم و زیاد میشند. در اینجا یک مفهوم ثابت وجود داره و اون واکنش مثبت کاربره و تفکیک انواع واکنشها باعث میشه روی فیچری تکیه کنید که جزییات بیشتری رو فراهم میکنه اما در عوض میتونه تغییر کنه و یا حتی مرز مشخصی بین کاربرها برای اون وجود نداره.
نکتهای که مهمه اینه که با فریمبندی درست مسائل ML میتونیم تا حد زیادی از effort مساله کم کنیم و به نوعی جای پامون رو برای توسعه پروژه در آینده سفتتر کنیم.
#book
@nlp_stuff
لاما۳ با پشتیبانی از فارسی آمد!
سلام بعد از مدتها. گفتیم با یه خبر برگردیم: شرکت متا لاما۳ رو بیرون داد. علی الحساب چند تا بولت راجع بهش بگیم تا جزئیات مفصلتر رو در آینده نزدیک بهتون بگیم:
• پشتیبانی از فارسی (لینک دمو در انتهای پست و عکس اول از نمونه سوال و جواب)
• ۱۰ درصد بهبود نسبت به ورژنهای قبلی داره
• در دو سایز ۷ و ۷۰ میلیاردی در دو نسخه base و instruct ارائه شده
• توکنایزرش با اندازه ۱۲۸ هزار تا آپدیت شده
• باز هم اجازه استفاده تجاری داده شده
• روی ۱۵ تریلیون توکن آموزش داده شده
• روی ۱۰ میلیون نمونه لیبلزده شده توسط انسان فاینتیون شده
• برای alignment هم از sft و ppo و dpo استفاده شده
• روی mmlu بهترین مدل زبانی وزنباز هست (بالای ۸۰)
• مدل ۷ و ۷۰ میلیاردی نسخه instruct یه ترتیب با ۶۲.۲ و ۸۱.۷ در HumanEval وضعیت بسیار خوب در کدزنی دارند.
• اندازه context window با اندازه پیش فرض ۸۱۹۲ و با قابلیت افزایش
تصاویر ضمیمه شدهاند. ورق بزنید.
لینک بلاگ متا:
https://ai.meta.com/blog/meta-llama-3/
لینک بلاگ توضیح و استفاده لاما:
https://huggingface.co/blog/llama3
لینک دمو لاما۳ (پشتیبانی از فارسی):
https://www.llama2.ai/
لینک کالکشن هاگینگفیس:
https://huggingface.co/collections/meta-llama/meta-llama-3-66214712577ca38149ebb2b6
#model
@nlp_stuff
شکست gpt3.5 توسط مدل وزنباز Mixtral-8x7B-v0.1 !
خلاصه بخوایم بگیم: جدیدا شرکت Mistral.ai یه مدل داده بیرون به اسم Mixtral-8x7B-v0.1 که با هشت تا مدل هفت میلیارد پارامتری Mistral با روش high-quality sparse mixture of experts model (SMoE) ساخته شده، تونسته در اکثر ارزیابیها هم لاما ۷۰ میلیاردی و هم جیپیتی۳.۵ رو شکست بده. خوشمزگی داستان اینه که یک سال بعد از جیپیتی ۳.۵ حالا میشه این مدل رو به صورت لوکال (طبیعتا با رم و جیپییو به اندازه کافی) سرو کرد. این مدل رو میسترال خیلی لاتیطور اول یه لینک تورنت بدون توضیح گذاشت و بعد که ملت به جنب و جوش دراومدند، چند روز بعد یه توضیحی هم منتشر کرد!
مدل mixtral 8x7b که امروز توسط میسترال منتشر شد یک سطح جدیدی برای مدل وزنباز (نه متنباز، چون کد و دیتا و... رو نداده) را ارائه کرد و تونست مدل چت جیپیتی ۳.۵ رو در اکثر بنچمارکها شکست بده. معماری این مدل شبیه مدل میسترال ۷ میلیاردیه (به زودی معماری اون هم براتون شرح خواهیم داد) با این تفاوت که در حقیقت این مدل جدید ۸ تا مدل expert در یک پکه. اینجا از یک تکنیک به نام MoE (Mixture of Experts) استفاده شده. این مدل یک مدل دیکودریه که بلوک فیدفوروارد بین ۸ گروه از پارامترها در هر لایه و برای هر توکن دو تا از این کارشناسها (expert) رو انتخاب میکنه که توکن پردازش بشه. در معماری ترنسفورمرها یک سری لایه feed-forward داره، در MoE جای بعضی از این لایهها از لایههای MoE استفاده شده است. لایهی MoE یک شبکهی روتری داره که انتخاب میکنه کدوم کارشناس (Expert) کدوم توکنها رو بهتر پردازش میکنند. این تکنینم باعث میشه تعدا پارامترها زیاد بشه اما هزینه و سرعت کنترل بشه چون مدل فقط از بخشی از تعداد کل پارامترها رو برای یک توکن استفاده میکنه. همونطور که گفتیم در این میکسترال دو تا کارشناس در هر لحظه انتخاب میشن که باعث میشه سرعت دیکودینگ شبیه یه مدل ۱۲.۹ میلیاردی بشه در صورتی که ۴ برابرش (۴۶.۷ میلیارد) پارامتر داره!! یه عده اشتباه فکر میکردند ۵۶ میلیارد (۸*۷) پارامتر داره ولی اشتباهه چون فقط بعضی لایههای feed-forward فقط تکرار شدند نه همگی پارامترها. اگر بابت MoE کمی گیج شدید، نگران نباشید چون این یکی هم مفصلا در پست دیگهای شرح میدیم. تا اینجا دو تا طلبتون پس.
جونمون براتون بگه که مدل پایه و مدل Instruct رو منتشر کردند. طول کانتکستش ۳۲ هزار شده. تونسته مساوی یا بهتر از مدل ۷۰ میلیاردی لاما۲ و جیپیتی ۳.۵ در اکثر بنچمارکها باشه. عکس نتایج رو در پیوست گذاشتیم. پنج تا زبون انگلیسی، فرانسوی، آلمانی، اسپانیایی و ایتالیایی رو بلده (به نظر روی دیتای togethercomputer/RedPajama-Data-V2 ترینش کردند، حدس ماست). توی تسک کدزنی هم خوبه و توی HumanEval به ۴۰.۲ رسیده. در نهایتا هم با Apache2.0 منتشرش کردند که همگی صفا کنیم. مدل Instruct فرمت پرامپت خودشو داره که توی لینکهایی که آخر میذاریم هست. مثل میسترال ۷b نمیدونیم دیتاستش چیه و چه حجمی داره و چجور پیشپردازش شده. دیتای sft و DPO (برای فاین تیون کردن) هم نمیدونیم! کد لود کردن و اینفرنس هم توی لینکها هست که البته حداقل ۳۰ گیگ رم و جیپییویی مثل A100 میخواد.
لینک بلاگ پست انتشار مدل:
https://mistral.ai/news/mixtral-of-experts/
لینک مدل پایه Mixtral-8x7B-v0.1:
https://huggingface.co/mistralai/Mixtral-8x7B-v0.1
لینک مدل Mixtral-8x7B-Instruct-v0.1:
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
لینک بلاگ هاگینگفیس:
https://huggingface.co/blog/mixtral
#read
#blog
#link
#model
@nlp_stuff
کورس LLM دانشگاه شریف
این ترم دانشکده کامپیوتر شریف کورسی رو در مقطع تحصیلات تکمیلی با موضوع LLMها (مدلهایزبانی بزرگ) و مسائل مربوط به اونها با تدریس مشترک دکتر سلیمانی، دکتر عسگری و دکتر رهبان ارائه کرده. خوبی این کورس اینه که به صورت جامع و کاملی انواع مباحث موردنیاز رو بحث کرده (از معرفی معماری ترنسفورمری گرفته تا فرآیندهای جمع آوری داده و روشهای PEFT و ...) از همه اینها مهمتر، فیلمها و تمرینهای این کورس هم به صورت پابلیک در لینک درس قرار میگیرن. از دست ندید.
لینک کورس:
sharif-llm.ir
لینک ویدیوها:
https://ocw.sharif.edu/course/id/524
#course
#coach
@nlp_stuff
ویدیوهای کارگاه آشنایی با HF و میزگرد آیا زمستان هوش مصنوعی در پیش است؟
مهدیمون در دو برنامه از WSS امسال حضور داشت.
اولی ورکشاپی بود با عنوان آHugging Face: A Platform to Democratize Open-Source AI که در اون سعی کرده به شکل متفاوتی از ابتدای تایملاین دیپ لرنینگ شروع کنه به توضیح دادن تا به این برسه که هاگینگفیس چجوری داره به دموکراتایز کردن هوش مصنوعی کمک میکنه. دیدنش دید خیلی خوبی از بالا بهتون میده.
دومی هم میزگردی بود که زمستان هوش مصنوعی را بررسی میکنند. آقای دکتر ربیعی، آقای دکتر رهبان و محمدرضا صمصامی (از محققین موسسه میلا) هم در این میزگرد حضور داشتند و راجع به این موضوع صحبت میکردند که آیا این مسیر به AGI ختم میشه یا به زمستان بعدی هوش مصنوعی خواهیم رسید.
لینک ویدیوی ورکشاپ:
https://aparat.com/v/PC952
لینک ویدیوی میزگرد:
https://aparat.com/v/nUVJR
#overfit
#coach
@nlp_stuff
اندر حکایت GPT-4 و چالهچولههای آن!
اندکی از انتشار GPT-4 میگذره و حالا در این پست ویرگول قصد داریم بر اساس مقاله اخیری که تیم microsoft منتشر کرده به نقاط کور و چالشهای این مدل بپردازیم. در این مقاله به صورت هنرمندانه promptهایی تهیه شده که این نقاط ضعف رو نشون میده و دیدنش خالی از لطف نیست.
پ.ن.۲: اینا نشستند ۱۵۰ صفحه مقاله نوشتند خداوکیلی ظلم در حقشون هست که شما مقاله شون رو حتی یه تورق هم نکنید! حداقل تصاویرش رو ببینید D:
لینک پست ویرگول:
https://virgool.io/overfit/gpt-4-b35cyw5oxi4t
لینک مقاله:
https://arxiv.org/abs/2303.12712
#read
#paper
#overfit
@nlp_stuff
مدل HuggingGPT، مدلی با مغز GPT و بازوی HuggingFace
همانطور که خودتون هم میبینید و میشنوید ChatGPT همه جا رو در نوردیده و طیف مختلف و وسیعی از وظایف مختلف رو میتونه بهتر از انسان انجام بده. با وجود این همه قدرت مدلهای زبانی، اما این مدلها محدودیتهایی هم دارند. مثلا صرفا به مسائلی که ورودی و خروجیشون متنی هستند محدود هستند (ممکنه بگید GPT4 مدل مولتی موداله بله اما GPT4 اولا فقط میتونه در ورودی تصویر بگیره و ثانیا اگر بخواد تصویر خروجی بده باید تحت کدی مثل tikz این کار رو بکنه که کیفیت عکسهاش اصلا اون چیزی که در نظر هست نیست). محدودیت دیگه این که در سناریوهای دنیای واقعی که نیازمند شکستن وظیفه به چندزیروظیفه هست هم عملکرد کاملی ندارند و البته در بعضی مسائل خاص متنی هم حتی نسبت به مدلهای اکسپرت عملکرد پایینتری دارند. حالا یک عده چینی از دانشگاه zhejiang ایدهای برای حل این محدودیتها به سرشون زده و اون رو با نام HuggingGPT پیاده کردند. شهود این ایده این شکلیه که بیایم از chat-gpt به عنوان مغز و یک جور کنترلگر و از مدلهای حاضر در هاب هاگینگفیس در حکم بازوان اجرایی متخصص استفاده کنیم. در این صورت میتونیم هم از قدرت منطقی gpt استفاده کنیم و هم این که تسکهایی که gpt نمیتونه اجراشون کنه (مثل تسکهای تصویری و صوتی) رو با استفاده از مدلهای متخصص حاضر بر روی HuggingFace بتونیم انجام بدیم.
این مدل به صورت کلی چهار بخش Task Planning و Model Selection و Task Execution و Response Generation دارد. روال کار هم به این صورته که کاربر درخواستش رو به مدل میده و مدل طی یک پایپلاین با کمک این چهار بخش درخواست کاربر رو انجام میده. در Task Planning درخواست کاربر ورودی گرفته میشه و به ChatGPT داده میشه. در این جا chatgpt وظیفه داره منظور این درخواست کاربر رو بفهمه و اون رو به زیروظایف کوچکتر بشکنه و همچنین ترتیب اجرای این زیروظایف و ورودی و خروجی اونها رو مشخص کنه. در گام بعدی یا Model Selection سپس هر کدوم از این زیروظایف و مشخصات مدلهای حاضر بر روی هاب هاگینگفیس به chatgpt داده میشن و chatgpt تصمیم میگیره که برای هر یک از این زیروظایف از چه مدلی میشه استفاده کرد. سپس در مرحله سوم یا Task Execution، هر یک از این زیروظایف توسط مدلهای مشخص شده اجرا میشن و البته تحت ترتیبی که تو مرحله یک مشخص شده به هم وصل میشن و ورودی و خروجیهای همدیگر رو فراهم میکنند. در گام آخر یا Repsonse Generation هم دوباره خروجیهای مرحله سوم به ChatGPT داده میشن و ChatGPT با جمعبندی این خروجیها، خروجی نهایی مدل رو آماده میکنه. برای فهم بهتر میتونید تصاویر پیوست شده رو مشاهده کنید. یک سری آزمایش هم اومدند و روی این مدل انجام دادند و نشون دادند که میتونه وظایف خیلی پیچیدهای که نیازمند ترکیب تواناییهای تصویری و صوتی و متنی هست رو انجام بده. نکته واجب به ذکر اینه که برای این که ChatGPT بفهمه هر یک از مراحل بالا رو باید انجام بده هم از In-context Learning استفاده کردند، یعنی این که نمونه ورودیها و خروجیها رو در prompt ورودی به ChatGPT میدن و GPT خودش میفهمه باید چه جوری اوستا کنه قضیه رو.
قبلا در این پست (/channel/nlp_stuff/318) هم راجع به یک کیس جالب دیگه که از LLM به عنوان حتی بکاند استفاده کرده بود صحبت کرده بودیم. به نظر میرسه با قدرتگیری LLMها در آینده نزدیک شاهد خیزش ترندی خواهیم بود که سعی میشه تا از اونها در حکم LLM as App یا حتی LLM as Everything استفاده بشه. آینده جذابی پیش روی محصولات این حوزه است. کسی چه میداند، شاید دنیای مهندسی نرمافزار بعد از LLM ها به شدت تکانده شود.
لینک مقاله:
https://arxiv.org/abs/2303.17580
پینوشت: با به اشتراکگذاری مطالبی که از آنها لذت میبرید، به بقیه هم این لذت رو هدیه بدید.
#read
#paper
@nlp_stuff
پیشرفت بس است، متوقفش کنید!
خبر جدید این که جمعی از دانشمندان، صاحبان فناوری و علاقهمندان به هوش مصنوعی (از بنجیو گرفته تا ایلان ماسک و گری مارکوس و حتی بنیانگذار stable-diffusion) با انتشار نامهای سرگشاده با ابراز نگرانی از بابت پیشرفت سریع هوش مصنوعی، از آزمایشگاههای هوش مصنوعی دنیا خواستهاند که آموزش دادن مدلهای هوش مصنوعی قویتر از GPT-4 را به مدت حداقل ۶ ماه متوقف کنند. این دوستان در این نامه گفتهاند که با این که هوش مصنوعی میتونه بشر رو وارد دوره جدیدی از تاریخ تمدنش کنه اما در صورتی که برنامهریزی صحیحی برای نحوه مدیریت هوش مصنوعی صورت نگیره این پدیده به عکس میتونه موجب بروز رخدادهای سیاهی بشه. همونطور که در طی چند وقت اخیر شاهد رقابتی دیوانهکننده میان شرکتهای غول بزرگ برای آموزش مدلهای بزرگ و بهتر هستیم و البته حاصل این رقابت ظهور مدلهای بسیار هوشمندی نظیر GPT هست که حتی سازندگان اون هم نمیتونن نحوه بروز هوشمندیش رو درک، پیشبینی و یا کنترلش کنند.
در بخش دیگهای از این نامه سوالهای جالبی مطرح شده. آیا ما باید تمامی مشاغل را اتومات و ماشینی کنیم؟ آیا باید کورکورانه به سمت ایجاد هوش مصنوعیهایی حرکت کنیم که در نهایت ممکن است جایگزین تمدن انسانی ما شوند؟ این دوستان نوشتهاند که توسعه هوش مصنوعی مسالهای نیست که فقط مربوط به توسعهدهندگان این حوزه باشد و کل جامعه بشری را در بر میگیرد. بنابراین از آزمایشگاههای هوش مصنوعی دنیا خواستهاند که آموزش مدلی قدرتمندتر از GPT-4 را به مدت حداقل ۶ ماه متوقف کنند و نکته جالب این که گفتهاند اگر این توقف امکانپذیر نباشد در این صورت دولتها باید وارد عمل شده و این توقف را اعمال کنند.
این دوستان سپس نوشتهاند که بعد از اعمال توقف، از این مکث برای طراحی و اجرای مجموعهای از پروتکلهای ایمنی مشترک برای توسعه هوش مصنوعی استفاده کرد. در ادامه تحقیق و توسعه هوش مصنوعی باید بر ساختن سیستمهای دقیقتر، ایمنتر، قابلتفسیرپذیرتر، شفافتر و همسوتر متمرکز شود. همچنین به صورت موازی، توسعهدهندگان هوش مصنوعی بایستی که به دنبال ایجاد رگولاتوریهایی برای حل بعضی چالشهای استفاده از هوش مصنوعی باشند. برای مثال وضع یک واترمارکینگ مشخص برای تشخیص آثار هوش مصنوعی از هوش واقعی، نظارت و ردیابی سیستمهای هوش مصنوعی و همچنین تلاش برای مقابله با اخلالات ناشی از سواستفادههای هوش مصنوعی در مسائل اقتصای و سیاسی از جمله این مسائلند.
این که چرا در این بحبوحه افراد بزرگ و معروفی این نامه عجیب را منتشر کردهاند خود سوال بزرگی است اما هر کدام از این افراد احتمالا با انگیزههای متفاوتی از محتوای این نامه حمایت کردهاند. بعضی انگیزههای محتمل این موارد هستند:
- نزدیکشدن به نقطه عطف هوش مصنوعی صنعتی: همانطور که شاهد هستیم اگر قبل از این در هوش مصنوعی آکادمی سعی میکرد تا با صنعت رقابت کند اما سطح رقابت اکنون به حدی رسیده است که گوگل نیز توانایی رقابت با Open-AI را ندارد. همچنین شایعاتی وجود دارد که Open-AI در حال آموزش دادن مدل GPT-5 است. با توجه به سیاستهای مخفیانه این شرکت این امکان وجود دارد که روند تحولات هوش مصنوعی از دست سایر بازیگران خارج شده و به یک مونوپلی ترسناک تبدیل شود. (حال آن که ما الان هم واقعا نمیدانیم آیا Open-AI مدلی هوشمندتر از GPT را آموزش داده یا خیر!)
- نگرانیهای واقعی بابت ریسکها و احتمال بروز فاجعههای اجتماعی: ما اکنون با تعداد زیادی مدلهای هوش مصنوعی در مودالهای مختلف نظیر تصویر و متن و ... مواجه هستیم. عدم توجه به خطرات و ریسکهای آن میتواند منجر به شرایط پیشبینینشده ناخواسته شود. از تولید محتواهای مستهجن گرفته تا احتمال جانشینی عوامل انسانی با عوامل هوش مصنوعی و بروز موج بیکاری میتواند تنها بخشی از این خطرات پیشبینیناشده باشد.
- خوابیدن هایپ هوش مصنوعی یا حتی تغییر مسیر رشد آن: هوش مصنوعی تا به امروز به صورت چراغ خاموش مشغول حرکت و رشد بوده است، اما در چند سال اخیر و مخصوصا بعد از انتشار chat-gpt توجه طیف زیادی از مردم عامه به آن جلب شد (خودتان در توییتر فارسی شاهد آن هستید!) در این بیان بسیاری از مردم بدون داشتن دانش خاصی از هوش مصنوعی توانستند چالشهای chat-gpt را کشف کنند. ادامه وضع فعلی در مسیر پیشرفت هوش مصنوعی یا میتواند منجر به بدبینشدن جامعه نسبت به آن و خوابیدن هایپ آن و واردشدن هوش به زمستانی دیگر شود یا این که توسعه کورکورانه با نیت آموزش مدل بزرگتر میتواند باعث خارج شدن مسیر تحقیقات دانشمندان هوش مصنوعی از چالشهای اصلیتر و واردشدن تمرکز و انرژی آنها بر رقابت بیهوده برای مدلهای بزرگتر و بزرگتر شود.
لینک نامه:
https://futureoflife.org/open-letter/pause-giant-ai-experiments/
#read
#news
@nlp_stuff
پَچپَچ کردن تمام آن چیزی است که نیاز دارید.
اگر در این چند سال همراه ما بوده باشید یادتون هست که معماریهای ViT و MLP-Mixer سعی داشتند نشون بدن که برای به دست آوردن یک بازنمایی خوب از تصویر، لازم نیست که به کانولوشن مقید باشیم. ViT نشون داد که میشه با پچپچ کردن (یعنی این که تصویر رو به تکههای کوچیکتر تقسیم کردن) و بعد اعمال اتشنن و MLP پچمحور این بازنمایی خوب رو به دست آورد و MLP-Mixer هم گفت که به همون اتنشن هم نیازی نیست و میشه بعد از پچپچکردن با دو تا MLP که یکیشون Depth-wise و دیگری Patch-wise هست بازنمایی خوبی را یاد گرفت. (قبلا در /channel/nlp_stuff/81 و /channel/nlp_stuff/168 این دو معماری رو معرفی کرده بودیم)
حالا یک مقاله که در TMLR چاپ شده اومده و نویسندگانش گفتن که اصلا بحث اتنشن و MLP نیست. اون چیزی که باعث یادگیری بازنمایی خوب میشه خود patch کردن و استفاده از یک الگوی متقارن (یا به قول خودش isotropic) بین این پچهای مختلف هست. بر همین ایده، خودشون اومدن و یک مدل به نام Conv-Mixer ارائه دادن. ساختار و نحوه عملکرد این مدل این شکلیه که تصویر ورودی رو مثل ViT و MLP-Mixer میاد و پچپچ میکنه و روی هر پچی هم patch-embedding رو اعمال میکنه (اینجا برای این که ژانگولربازی دربیاره بگه من تو مدلم از هیچ MLP استفاده نکردم اومده و این فرآیند Patch Embedding رو هم با کانولوشن با استراید اندازه سایز پچ انجام داده). سپس در مرحله بعدی میاد و لایهای به نام Conv-Mixer رو به تعداد عمق d روی این پچها اعمال میکنه. اما هر کدوم از این لایههای ConvMixer چه شکلی هستند؟ هر لایه ConvMixer در واقع از دو کانولوشن تشکیل شده. یک کانولوشن که صرفا به صورت depth-wise روی فیچرهای حاضر در یک عمق مشخص کانال و در مکانهای مختلف اون عمق اعمال میشه و یک کانولوشن دیگه که اون هم به صورت صرفا spatial-wise بر روی فیچرهای حاضر در یک مکان مشخص و در عمقهای مختلف اون مکان اعمال میشه. در نهایت هم بعد از اعمال d تا از این لایهها میاد و با میانگینگیری از بازنمایی پچهای مختلف یک بازنمایی کلی برای تصویر به دست میاره. عکس کد این مدل رو پیوست کردیم که بسیار هم ساده است و اگر ببینیدش یحتمل بهتر بتونید بفهمید ماجرا رو.
بعد مقاله اومده و مدل Conv-Mixer و بقیه رقبا نظیر Resnet و ViT و MLP-Mixer رو روی دیتاست ImageNet-1k آموزش داده و نشون داده که Conv-Mixer نسبت به بقیه رقبا دقت بالاتری گرفته و البته تعداد پارامتر کمتر و سرعت Throughput بیشتری هم داره. نکته جالب این مقاله به نظر اینه که نشون داده که برای انتقال بازنمایی بین پچها لازم نیست که از فرآیند Self-Attention یا MLP-Mixer که هر دو فرآیندهای سنگینی به لحاظ حافظهای هستند و استفاده کنیم و به صورت global اطلاعات بین پچها رو انتقال بدیم. بلکه میشه با خود کانولوشن این فرآیند انتقال اطلاعات رو به صورت لوکال پیادهسازی کنیم. یحتمل این پایان کار نیست و باز هم در آینده مدلهای بیشتری خواهیم دید که سعی دارن با تغییر در معماری با معماریهای سابق نظیر ResNet و ViT و MLP-Mixer و البته Conv-Mixer رقابت کنند.
لینک مقاله:
https://openreview.net/pdf?id=rAnB7JSMXL
#read
#paper
@nlp_stuff
همه ممکن است نشت کنند!
یکی از مهمترین بخشهای پایپلاین دیتا، نحوه صحیح تقسیمبندی دیتا به دادهی train و test است. نکات زیادی داره که مهمتریناش اینه که نباید نشتی داشته باشید؛ یعنی از دادهی آموزش نباید توی دادهی ولیدیشن و تست داشته باشید وگرنه میبینید متریکتون به شکل غیرواقعی خوب میشه. باز یکی دیگه از نکاتش اینه که قرار نیست توزیع داده آموزش و تست تفاوت زیادی کنند وگرنه میبینید که روی داده تست نتایجتون خیلی ضعیف میشه. یا اینکه قرار نیست هر جور که دوست دارید دادتون رو تقسیم کنید و گاهی مثلا اگر مساله با سری زمانی در ارتباطه، لازمه روی خط زمانی تقسیم کنید و گاهی لازمه شافل کنید و رندوم تقسیم کنید. نکات بیشتر و دقیقتری رو در فصل یک و دو کتاب hands on ml میتونید پیدا کنید.
شاید با خودتون فکر کنید خب اینکه خیلی راحته؛ ولی اینطور نیست. استاد پوروطنِ ما همیشه این مثل معروف رو میگفت که: شیطان در جزئیاته.
سال ۲۰۱۷ اندرو انگِ گولاخ و شرکا یک مقاله با عنوان CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning دادند (تریلی اسم مقاله رو نمیکشه). اونجا یه مدل CNNای ارائه دادند و روی صد هزار تا تصویر رادیولوژی از ۳۰ هزار تا بیمار آموزش دادند تا بتونند بیماری ذات الریه رو تشخیص بدن (اولا عظمت دیتا رو داشته باشید. ثانیا دقت کردید که چند تا تصویر برای یک بیمار وجود داشته). بعد اومدند این دیتا رو ۸۰ به ۲۰ بین آموزش و تست به صورت رندوم تقسیم کردند. چشمتون مشکل رو دید؟ اگر شما بیاید دیتا رو به صورت رندوم تقسیم کنید تصاویر یک بیمار میتونه توی هر دو تا دادهی ترین و تست باشه و مدل میتونه از فیچرهای مربوط به بیمار کلی استفاده کنه؛ حتی اگر این فیچرها مستقیما مربوط به خود بیماری ذات الریه نباشه. مثلا یک زخمی از عمل رو توی یه عکس آموزش میبینه و یاد میگیره این مربوط به کلاس اوله. بعد دیگه هر جا عین همون زخم رو ببینه زرتی میگه کلاس اوله و دیگه فکر نمیکنه. یعنی یه میانبر پیدا کرد. بعد از ۱۱ روز فهمیدند مشکل داره و اومدند این رو درست کردند و دوباره مقاله رو منتشر کردند. در عکس دوم ضمیمهشده به پست میتونید ببینید که جملهی there was 𝗻𝗼 𝗽𝗮𝘁𝗶𝗲𝗻𝘁 𝗼𝘃𝗲𝗿𝗹𝗮𝗽 between the sets رو در تصویر راست (نسخه اصلاح شده) نسبت به تصویر چپ (نسخه اولیه) اضافه کردند و نحوه تقسیم رو تغییر دادند.
حداقل دو تا درس از این موضوع میتونیم یاد بگیریم: اول. حواسمون به نشتی باشه چون همه ممکنه نشت کنیم. دوم. همه حتی اندرو انگ و شرکا هم ممکنه اشتباه کنند. پس فقط سعی کنیم یاد بگیریم، درستش کنیم و تکرار نکنیم. خجالت هم نداره.
لینک مقاله نسخه اول:
https://arxiv.org/abs/1711.05225v1
لینک مقاله نسخه اصلاح شده:
https://arxiv.org/abs/1711.05225
لینک توئیت توضیح این داستان:
https://twitter.com/svpino/status/1592140348905517056
پ.ن. شما هم اگر پست خوبی داشتید بفرستید تا به اسم خودتون توی کانال بذاریم.
#tweet
#handson
@nlp_stuff
مرا به بکاند چه حاجت که مست روی تو باشم
تا حالا بحث داغ این بود که در آینده نزدیک میشه برنامهنویسها رو دور ریخت و جاشون از هوش مصنوعی برای تولید کد استفاده کرد و ظهور ابزارهایی مثل copilot و gpt هم این اتفاق رو ممکن نشون میدادند. اما حالا این ایده یک لول جلوتر رفته، به این صورت که آقا اصلا چه نیازی به backend داریم بیاید جاش از مدلهای زبانی استفاده کنیم. در همین راستا یک عده اومدن در هکاتون Scale AI در این هفته ایده زدن و یک اپ ساده todo رو بدون پیادهسازی apiهای بکاندیاش و در واقع با جایگزین کردن GPT به جای بکاند پیادهسازی کردند و اتفاقا برنده جایزه اول این هکاتون هم شدند. در واقع مدلزبانی GPT در این پروژه به طور کامل جایگزین قسمت بکاند ماجرا شده و هم قسمت منطق و هم قسمت داده رو تونسته حل کنه و تازه هیچگونه training ای هم در کار نبوده. به صورت جزییتر اگر بخوایم توضیح بدیم ابتدا به GPT گفتند که مثلا This is a todo list app و بعد هم یک تیکه json رو به عنوان وضعیت دیتابیس به GPT ورودی دادند تا بفهمه که قالب دیتا چه شکلیه. در مرحله بعدی هر وقت نیاز به یک API Call بوده وضعیت فعلی و همچنین درخواست کاربر رو به GPT دادند و پاسخ GPT رو گرفتند. خوبی این اتفاق اینه که GPT که در حکم بکاند قرار گرفته هم در نحوه نحوه ذخیرهسازی داده و هم انجام اعمال منطقی بسیار منعطفه و میتونه طیف گستردهای از api call هایی که حتی بهشون فکر نشده رو هم انجام بده.
این پروژه با این که فعلا صرفا روی نیازمندی ساده todo اجرا گرفته شده ولی میتونه آغازی بر یک روند جالب برای آینده باشه. آیندهای که توش نیاز به دیتابیس و بکاند و حتی شاید زبانهای برنامهنویسی مثل پایتون نیست و یک مدل زبانی قدرتمند مثل GPT میتونه در حکم یک مغز متفکر تمامی نیازمندیهای درخواستی رو انجام بده.
لینک رپو:
https://github.com/TheAppleTucker/backend-GPT
لینک توییت توضیحات:
https://twitter.com/DYtweetshere/status/1617471632909676544
#link
@nlp_stuff
دورزدن تحریم Open-AI با نامبرلند
در چند هفتهای که گذشت فضای شبکههای مجازی پر شد از چتهایی که ملت با chat-gpt داشتند. با این که chat-gpt فعلا رایگانه اما دوستمون open-ai اجازه ساختن اکانت با شماره ایران رو نمیده و شما برای ساخت اکانت نیاز به شماره خارجی دارید. خوشبختانه سایت نامبرلند هم اومده و سرویس شماره مجازی یکبار مصرف رو برای open-ai اضافه کرده. میتونید تو نامبرلند شماره مجازی open-ai رو بخرید (ارزونترینش مال اندونزیه با ۶۵۰۰ فعلا) و بعد با همین شماره تو سایت open-ai ثبت نام کنید و با chat-gpt معاشرت کنید بعدش. البته به علت بار سنگینی که روی chat-gpt اومده تو چند وقت اخیر هر از گاهی میگه الان تحت فشارم بعدا بیاید سراغم. فقط حواستون باشه از سایت open-ai بعد ثبت نام لاگ اوت نکنید و ترجیحا هم با vpn بازش کنید (ما امتحان نکردیم ولی عقل سلیم همچین چیزی میگه )
اگر هم حال و حوصله پول دادن رو ندارید میتونید با youchat که رایگانه معاشرت کنید. شبیه chat-gpt هست و ارزش امتحان کردن رو داره.
پینوشت: این پست رپرتاژ و تبلیغی نیست. منتها این قدر سوال پرسیده شد که شما چطور به chat-gpt دسترسی دارید، گفتیم نحوه دسترسی رو به اشتراک بگذاریم.
آدرس نامبرلند:
numberland.ir
آدرس youChat:
https://you.com/search?q=who+are+you&tbm=youchat
@nlp_stuff
عمرتان زیادی کرده که دکترا بخوانید؟
این هفته آقای لکان (یکی از سه خدای دیپلرنینگ) توییتی زده و به مورد Aditya Ramesh اشاره کرد. فردی که لیسانسش رو از دانشگاه NYU گرفته و قصد داشت تا وارد دوره دکتری شود اما با یک کارآموزی در OpenAI مسیرش تغییر کرده و در آن جا مانده و در نهایت با مدرک لیسانس تبدیل به نویسنده اصلی مقاله مدل معروف Dall-E میشود.
آقای بهنام نیشابور محقق گوگل هم توییت لکان را کوت کرده و نکات ریزتری برای تایید "نباید برای یادگیری ماشین دکترا خواند" به آن اضافه کرده است. نکته اصلی که تحصیلات تکمیلی برای زمینهای مثل ML آورریتد است. چرا؟ چون که یک نفر بدون هیچ گونه پیش زمینه خاصی میتواند به این فیلد وارد شده و با اندکی وقت گذاشتن، حتی میتواند به راحتی در کنفرانسهای مطرح دنیا مقالهای چاپ کند. منابع آموزشی ML روز به روز گستردهتر و در دسترستر میشوند و واقعا لازم نیست کسی برای وارد شدن به وادی پژوهشگری یادگیری ماشین بیاید و ۵ الی ۶ سال از عمرش را در ارشد یا دکتری هدر دهد. (و خودمانیم، رشتههایی مثل فیزیک را با ML مقایسه کنید. طرف در فیزیک تا بخواهد به جایی برسید باید مو سفید کند اما امروزه از صفر تا صد ماشین لرنینگ را با این تئوریهای آبکی که دارد میتوان در کمتر از دو سال طی نمود)
نکته دیگری که آقای نیشابور اشاره کرده است این است که تعداد موقعیتهای دکترای یادگیری ماشین روز به روز بیشتر میشود اما از آن طرف تعداد شغلهایی که به مدرک دکتری یادگیری ماشین نیاز دارد در آینده روز به روز کمتر میشود. در واقع با داشتن دکتری شما over-qualified میشوید و از طرف دیگر هم مگر آکادمی چه قدر موقعیت شغلی میتواند داشته باشد؟ در مقابل، صنعت اما بیش از ML Researcher به ML Engineerها نیازمند است. کسی که بتواند چیزی را واقعا بسازد. دوره دکتری باعث دوری نسبی از شما صنعت و مهارتهای آن خواهد شد. آقای نیشابور در انتها به نتایج تحقیقی اشاره کرده که در آن گفته شده درصد زیادی از دانشجویان تحصیلات تکمیلی دچار افسردگی و اضطراب شدید هستند. پس اگر دلتان میخواهد سگ سیاه افسردگی هر شب شما را بغل کند، میتوانید به گزینه دکتری خواندن فکر کنید.
نکته دیگری که ما به صحبتهای بالا اضافه میتوانیم بکنیم این است که جایگاه متفاوت یادگیری ماشین و به طور عام هوش مصنوعی نسبت به سایر علوم را باید در نظر گرفت. هوش مصنوعی در مدت ۷۰ سال اخیری که از خدا عمر گرفته است، همچنان حوزه یکپارچهای نبوده است. هر از چند گاهی ایدهای آمده است و با هوش مصنوعی وارد بهاری شده و در نهایت در زمستانی دفن شده است. گاهی منطقدانها به آن وارد شدهاند و با دیدشان روشهای سیستمهای خبره و منطق را برای هوش مصنوعی توسعه دادهاند. گاهی برقیها وارد شدهاند و مفاهیم سیگنالی را در حوزه هوش مصنوعی غالب کردهاند و این اواخر هم ریاضیدانها و آماردانها وارد شده و پارادایم یادگیری ماشین را پادشاه هوش مصنوعی کردهاند. از حدود ۲۰۱۲ به این ور هم شبکههای دیپ (شاید مدیون پیشرفتهای سختافزاری) فرمان بازی را به دست گرفته و بهاریترین دوران هوش مصنوعی را رقم زدهاند. اما واقعیت این است که یادگیری عمیق نیز اکنون احتمالا وارد پاییز خود شده است (در این مورد در آینده احتمالا صحبت میکنیم). مسیر تحقیقاتی هوش مصنوعی و یادگیری ماشین احتمال دارد به زودی دوباره وارد زمستان سخت شده و تمامی سرمایهگذاریهای تحقیقاتی بسوزند. البته که بحث دنیای صنعت فرق میکند و همین الان بسیاری راهحلهای یافت شده در دنیای آکادمی آماده هستند تا به دنیای صنعت و کاربرد اعمال شوند. در همین راستا شاید پیشنهاد ML Engineer شدن به جای ML Researcher شدن پیشنهاد عافیت داری برای دین و دنیا باشد. برای حسن ختام به قول سعدی:
کرامت جوانمردی و ناندهی است
مقالات بیهوده طبل تهی است
پینوشت: نگارنده به عنوان کسی که در ایران گرفتار بلای دکترای خواندن در زمینه یادگیری ماشین شده، به شما توصیه میکند تحت هیچ شرایطی هیچ شرایطی هیچ شرایطی به گزینه دکترا خواندن در ایران نرسید. اگر واقعا هنوز در شک هستید حاضرم تک تک وقت گذاشته و یک به یک متقاعدتان کنم.
لینک توییت لکان:
https://twitter.com/ylecun/status/1605450677806895104
لینک توییت نیشابور:
https://twitter.com/bneyshabur/status/1605677285255675904
#tweet
#read
@nlp_stuff
قطار self-supervised به ایستگاه tabular data رسید!
قطعا در مدح self-supervied learning زیاد شنیدید و در این پست (/channel/nlp_stuff/298) هم روشهاش در NLP رو مرور کردیم. یکی از محدودیتهای اصلی self-supervised learning اینه که خیلی وابسته به دامین و مودالیتیه. مثلا روشهای حوزه تصویر به سختی برای حوزه متن قابل انجامه. حالا مردانی مرد از google research به پا خاستهاند و سعی کردند روشی عمومی برای self supervised learning ارایه کنند که حتی بر روی tabular data هم بتونه جواب بده. معماری کلی این روش رو در تصویر زیر میتونید ببینید. مانند همه روشهای SSL که در NLP بررسی کردیم، طبیعتا اینجا هم فاز pre-training و fine-tuning داریم که اساسا وجود همین پارادایم هم باعث میشه در محیطهایی که داده لیبلدار کمتری وجود داره بهتر عمل بکنه. ایده اصلی در فاز pre-training هست که از denoising auto encoderها الهام گرفته شده. در این روش به ازای یه batch از داده ترین به صورت رندم یک زیرمجموعهای از فیچرها انتخاب میشه و این فیچرها رو corrupt میکنند. روش corruption هم به این صورته که به صورت رندم با همون فیچرها از سمپلهای دیگه جایگزین میشه. حالا همونطور که در قسمت بالای تصویر میبینید دیتای سالم و دیتای corruptشده به طور همزمان (تعریف همزمان اینه که دو تا شبکه داریم که full parameter sharing انجام دادند) به یک شبکه انکودر f داده میشه که داده رو به فضای بزرگتری میبرند و سپس به یک شبکه g داده میشه که داده رو به فضای کوچکی میبره و بعد با استفاده از InfoNCE که یه loss function مشهور در عرصه SSL هست تفاوت خروجی شبکه به ازای دیتای corruptشده و دیتای سالم به دست میاد و کار ترینینگ انجام میشه (InfoNCE عملا شبیه یه categorical cross entropy عمل میکنه که به ازای نمونههای شبیه به هم مقدار کمی خروجی میده و به ازای نمونههای negative که دور از هم هستند هم مقدار زیادی رو خروجی میده).
در فاز fine tuning عملا شبکه g کنار گذاشته میشه و یک classifier head بر روی شبکه f گذاشته میشه و کل شبکه fine tune میشه.
برای تست این روش هم از دیتاست OpenML-CC18 استفاده شده که ۷۲ تسک دستهبندی داره و چون این مساله برای tabular data بوده ۳ تا از دیتاستهاش رو (CIFAR , MNIST, Fashion MNIST) کنار گذاشتند و عملا بر روی ۶۹ دیتاست تست گرفتند که روی برخی حتی با داده کمتر، بهبود هم داشته. مقاله خیلی جمع و جور و به زبان ساده و با جزییات تکنیکال نوشته شده و توصیه میکنیم حتما بخونید.
لینک مقاله:
https://arxiv.org/abs/2106.15147
لینک گیتهاب:
https://github.com/clabrugere/pytorch-scarf
#read
#paper
@nlp_stuff
بحر در کوزه این بار با HF!
احتمالا تا حالا شده که در مسیر تسکهای NLP به دیوار سخت و خشن یک دیتاست بزرگ برخورده باشید (مثلا یک دیتاست در اندازه چند ده گیگابایت که شاید حتی جایی برای ذخیرهسازیش در دیسک نداشته باشید چه برسه به رم). در این حالته که دستها رو به نشانه تسلیم بالا میبرید. اما هاگینگفیس در کتابخانه Datasets🤗 این مشکل رو حل کرده. در واقع با دو قابلیت memory mapping و streaming که این کتابخانه فراهم کرده بر محدودیت رم و دیسک غلبه میکنید. قابلیت memory mapping (که به صورت پیشفرض فعاله) به این اشاره داره که با لودکردن هر دیتاستی توسط Datasets🤗 این کتابخانه یه سری cache file از دیتاست میسازه که بر روی دیسک ذخیره شدند و عینا همون محتویات دیتاست لودشده در RAM هستند. پس یه جور آیینه تمامنمای RAM محسوب میشه و از این جا به بعد دیگه این کتابخانه یه اشارهگر به اول این فایل باز میکنه و دیتا به صورت batch داخل رم لود میشه. طبیعتا آموزش مدل از اینجا به بعد I/O bounded خواهد بود اما نگران اون قسمتش هم نباشید چون فرمتی که برای کار با این فایلها استفاده میکنه Apache Arrow هست که یه فرمت بهینهشده است. از طرفی برای اینکه نعمت رو بر ما تکمیل کرده باشه و حتی نگران کمبود دیسک هم نباشیم قابلیت streaming رو تعریف کرده که ینی میتونید از هاب دیتاست هاگینگفیس، دیتاست رو به صورت batch و on the fly دانلود کنید و پردازش انجام بدید (که به صورت پیشفرض فعال نیست و باید streaming=True باشه). البته با استفاده از این قابلیت امکان random access به دیتاها رو از دست میدید (مثلا نمیتونید دستور dataset[2335] رو ران کنید چون آبجکتی که میسازه حالت iterable داره و شبیه generatorهای پایتونیه) ولی با دستور next و iterate کردن بر روی دیتاست، دقیقا سمپلهای یک دیتاست استریمنشده رو میگیرید. پس دیگه بهونه بسه و پاشید کار با دیتاستهای بزرگ رو شروع کنید.
پ.ن: در تصاویر یه سری نمونه کدهایی آوردیم که از فصل ۱۰ کتاب گرانسنگ NLP with Transformers گرفته شده که اثری جاوید از هاگینگفیسه.
#handsOn
@nlp_stuff