ai_machinelearning_big_data | Технологии

Telegram-канал ai_machinelearning_big_data - Machinelearning

27348

Самая актуальная информация из мира ML, Нейронных сетей,DI По всем вопросам- @haarrp @itchannels_telegram - 🔥 best it channels @pythonl - 🐍 @machinee_learning -chat @ArtificialIntelligencedl - AI @datascienceiot - ml 📚 @machinelearning_ru ml

Подписаться на канал

Machinelearning

🚀 Introducing IDEFICS: An Open Reproduction of State-of-the-Art Visual Language Model

An open-access visual language model. IDEFICS is based on Flamingo, a state-of-the-art visual language model initially developed by DeepMind, which has not been released publicly.

IDEFICS - это модель с открытым доступом визуального языка , разработанной компанией Deepmind. Как и GPT-4, мультимодальная модель принимает на вход произвольные последовательности изображений и текстов и выдает на выходе текст. IDEFICS построена исключительно на основе общедоступных данных и моделей.

Модель может отвечать на вопросы об изображениях, описывать визуальное содержимое, создавать истории на основе нескольких изображений или просто вести себя как чистая языковая модель.

☑️ Model: https://huggingface.co/HuggingFaceM4/idefics-80b-instruct

🖥 Github: https://github.com/huggingface/blog/blob/main/idefics.md

⭐️ Demo: https://huggingface.co/spaces/HuggingFaceM4/idefics_playground

🤗 HF: https://huggingface.co/WizardLM

ai_machinelearning_big_data

Читать полностью…

Machinelearning

⚡📢SeamlessM4T

SeamlessM4T is designed to provide high quality translation, allowing people from different linguistic communities to communicate effortlessly through speech and text.

Только что Meta выпустила самый мощный нейро-переводчик на сегодняшний день. SeamlessM4T понимает более 100 языков и умеет осуществлять все типы переводов: из текста в текст, из речи в текст, из текста в речь и даже из речи в речь.

Github
Article
Demo
Hugging face

ai_machinelearning_big_data

Читать полностью…

Machinelearning

💻 Хочешь работать с масштабными цифровыми продуктами? Учись обрабатывать большие данные

MLOps — все более популярный среди компаний способ повышения производительности и создания надежных моделей корпоративного уровня.

✅ Владение инструментами MLOps открывает новые карьерные горизонты специалистам ML, Data Scientist’ам и Software инженерам.

💪 Ответьте на 10 вопросов и проверьте, насколько вы готовы к обучению на продвинутом курсе «MLOps» от OTUS.

Успей присоединиться к группе, курс стартует 31 августа!

✍️ ПРОЙТИ ТЕСТ: https://otus.pw/P1XwO/

Нативная интеграция. Информация о продукте www.otus.ru

Читать полностью…

Machinelearning

💨CoDeF: Content Deformation Fields for Temporally Consistent Video Processing

Новый фреймворк для переноса создания любого стиля на видео.

🖥 Github: https://github.com/qiuyu96/codef

☑️ Project: https://qiuyu96.github.io/CoDeF/

📕 Paper: https://arxiv.org/abs/2308.07926

⭐️ Demo: https://ezioby.github.io/CoDeF_Demo/

ai_machinelearning_big_data

Читать полностью…

Machinelearning

⚡Легкий способ получать свежие обновлении и следить за трендами в разработке на вашем языке. Находите свой стек и подписывайтесь:


Машинное обучение: @machinelearning_ru
Go: @Golang_google
C#: @csharp_ci
Базы данных: @sqlhub
Python: @pythonl
C/C++/: @cpluspluc
Data Science: @data_analysis_ml
Devops: @devOPSitsec
Rust: @rust_code
Javascript: @javascriptv
React: @react_tg
PHP: @phpshka
Docker: @docker
Android: @android_its
Мобильная разработка: @mobdevelop
Linux: linuxacademy
Big Data: t.me/bigdatai
Хакинг: @linuxkalii
Java:@javatg
Собеседования: @machinelearning_interview


💼 Папка с вакансиями: t.me/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.me/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.me/addlist/eEPya-HF6mkxMGIy

🔥ИТ-Мемы: t.me/memes_prog

🇬🇧Английский: @english_forprogrammers

Читать полностью…

Machinelearning

✔️ DeDoDe: Detect, Don't Describe -- Describe, Don't Detect for Local Feature Matching

Новая мощная система распознавания, описание и сопоставления изображений.
3d объектов .

🖥 Github: https://github.com/parskatt/dedode

☑️ TensorRT: https://github.com/fabio-sim/DeDoDe-ONNX-TensorRT

📕 Paper: https://arxiv.org/abs/2308.08479

⭐️ Demos: https://github.com/Parskatt/DeDoDe/blob/main/demo

ai_machinelearning_big_data

Читать полностью…

Machinelearning

🧑‍💻DeciCoder: A new open-source LLM, specialized for generating code in Python, Java, and Javascript.

🚀Новый LLM с открытым исходным кодом, специализированный для генерации кода на языках Python, Java и Javascript.

Авторегрессивная языковая модель, отличающаяся исключительной производительностью и эффективным использованием памяти.

- parameters: 1 B
- dataset: 'The Stack' dataset
- supports: Python, Javascript, Java
- context: 2048 tokens

Model
Colab
Dataset

ai_machinelearning_big_data

Читать полностью…

Machinelearning

EasyEdit: An Easy-to-use Knowledge Editing Framework for Large Language Models

EasyEdit, demonstrating that knowledge editing surpasses traditional fine-tuning in terms of reliability and generalization.

Новый фреймворк для настройки и редактирования ответов больших языковых моделей. EasyEdit работает с LlaMA-2, GPT-J, Llama, GPT-NEO, GPT2, T5 и другими популярными моделями(поддерживаются модели от 1B до 65B).

🖥 Github: https://github.com/zjunlp/easyedit

📕 Paper: https://arxiv.org/abs/2308.07269v1

⭐️ Demo: http://knowlm.zjukg.cn/demo_edit

🎓Online Tutorial: https://colab.research.google.com/drive/1zcj8YgeqttwkpfoHXz9O9_rWxFFufXSO?usp=sharing

☑️ Docs: https://zjunlp.gitbook.io/easyedit

🤓 Dataset: https://drive.google.com/file/d/1IVcf5ikpfKuuuYeedUGomH01i1zaWuI6/view?usp=sharing

ai_machinelearning_big_data

Читать полностью…

Machinelearning

🏅 Партнер Сбера BI.ZONE провел отборочные соревнования по этичному хакингу CTFZone

В квалификационном этапе приняли участие 1326 команд из 117 стран мира — 10 победителей из России, Индонезии, Китая, Южной Кореи, Чехии и Франции посоревнуются в финале в ноябре. Первые три места получат 10 тыс., 5 тыс. и 3 тыс. долларов соответственно. Всего в отборочных необходимо было решить 26 заданий в 7 категориях: спортивное программирование, эксплуатация уязвимостей, расследование кибератак, криптография и другие направления в сфере кибербезопасности.

ai_machinelearning_big_data

Читать полностью…

Machinelearning

В июле прошли ИТ-соревнования IT’s Tinkoff Capture the Flag. На нашей памяти это одни из самых необычных соревнований

Почему это было круто?

✅ Креативные задания, основанные на трендах массовой культуры и мемах (да, вам не показалось)
✅ 6863 команды из 13 городов России и Беларуси
✅ Офлайн и онлайн формат
✅ Первые соревнования по спортивному хакингу для всех ИТ-спецов

Таких заданий еще никто раньше не делал. Вот например:

«Галя, у нас отмена», — отчаянно кричит продавщица. Очередь из покупателей уходит за горизонт. «Молодой человек, второй год зову Галю, а ее все нет и нет — вон какая очередь. Может, просто взломаем программу, а?».‎ Разберитесь в магазинном софте и сделайте отмену.‎»‎

Читать полностью…

Machinelearning

👨‍🎓Harvard CS50’s Artificial Intelligence with Python – Full University Course

В этом бесплатном курсе Гарвардского университета рассматриваются концепции и алгоритмы, лежащие в основе современного искусственного интеллекта.

🎞 Video
📌 Course resources

ai_machinelearning_big_data

Читать полностью…

Machinelearning

🪄Optimizing a Text-To-Speech model using 🤗 Transformers

В этом руководстве показано как можно оптимизировать Bark, модель Text-To-Speech (TTS), на основе трех библиотек из экосистемы Hugging face: Transformers, Optimum и Accelerate.

🤗 Post: https://huggingface.co/blog/optimizing-bark

🖥 Colab: https://colab.research.google.com/github/ylacombe/notebooks/blob/main/Benchmark_Bark_HuggingFace.ipynb

⭐️ Bark: https://huggingface.co/docs/transformers/main/en/model_doc/bark#overview

ai_machinelearning_big_data

Читать полностью…

Machinelearning

🚀 AgentBench: Evaluating LLMs as Agents.

AgentBench, a multi-dimensional evolving benchmark that currently consists of 8 distinct environments to assess LLM-as-Agent's reasoning and decision-making abilities in a multi-turn open-ended generation setting.

Комплексный бенчмарк для оценки работы LLM агентов.

🖥 Github: https://github.com/thudm/agentbench

📕 Paper: https://arxiv.org/abs/2308.03688v1

☑️ Dataset: https://paperswithcode.com/dataset/alfworld

ai_machinelearning_big_data

Читать полностью…

Machinelearning

👁‍🗨 PyTorch Toolbox for Image Quality Assessment

An IQA toolbox with pure python and pytorch.

Набор инструментов и датасетов PyTorch для оценки качества изображений, включая LPIPS, FID, NIQE, NRQM(Ma), MUSIQ, NIMA, DBCNN, WaD

🖥 Github: https://github.com/chaofengc/iqa-pytorch

📕 Paper: https://arxiv.org/abs/2308.03060v1

🖥 Colab: https://colab.research.google.com/drive/14J3KoyrjJ6R531DsdOy5Bza5xfeMODi6?usp=sharing

☑️ Dataset: https://paperswithcode.com/dataset/koniq-10k

ai_machinelearning_big_data

Читать полностью…

Machinelearning

🎲 Anti-Exploration by Random Network Distillation, Tinkoff Research, ICML 2023

We propose a new ensemble-free offline RL algorithm called SAC-RND. We evaluate our method on the D4RL (Fu et al., 2020) benchmark, and show that SAC-RND achieves performance comparable to ensemble-based methods while outperforming ensemble-free approaches.

Ученые из Tinkoff Research открыли новый Offline-RL алгоритм, который показывает SOTA-результаты, сравнимые с ансамблевыми моделями (в некоторых случаях даже лучше), и при этом требует до 20 раз меньше времени на обучение.


🖥 Github: https://github.com/tinkoff-ai/sac-rnd

🤓 Paper: https://proceedings.mlr.press/v202/nikulin23a.html

ai_machinelearning_big_data

Читать полностью…

Machinelearning

Делимся с вами полезным IT event-ом, который пройдет онлайн в этот четверг:

Куда развивается разработка в e-com? 🛒

E-com — индустрия с высокой конкуренцией. Поэтому сложных IT-задач там достаточно: highload, персонализация и необходимость оперативно запускать новые продукты и масштабироваться.

24 августа на бесплатной онлайн-конференции E-COMMUNITY руководители разработки из СберМаркета, Ozon, X5 и Lamoda поделятся свежими технологическими кейсами в архитектуре, ML, бэкенде и DevOps.

Присоединяйся к E-COMMUNITY, если интересно узнать про настоящее и будущее IT в e-com.

Регистрация по ссылке

🗓 24 августа, 16:00-20:00 мск • Онлайн

Читать полностью…

Machinelearning

☄️Dataset Quantization

DQ is able to generate condensed small datasets for training unseen network architectures with state-of-the-art compression ratios for lossless model training.

Квантование наборов данных (DQ) - новая схема сжатия больших наборов данных в небольшие сабсеты, которые могут быть использованы для обучения любых нейросетевых архитектур.

git clone https://github.com/vimar-gu/DQ.git
cd DQ


🖥 Github: https://github.com/magic-research/dataset_quantization

📕 Paper: https://arxiv.org/abs/2308.10524v1

☑️ Dataset: https://paperswithcode.com/dataset/gsm8k

ai_machinelearning_big_data

Читать полностью…

Machinelearning

🪄WizardLM: Empowering Large Pre-Trained Language Models to Follow Complex Instructions

Model outperforms ChatGPT-3.5, Claude Instant-1, PaLM-2 and Minerva on GSM8k, simultaneously surpasses Text-davinci-002, PaLM-1 and GPT-3 on MATH.

Фреймворк WizardMath, который расширяет способности Llama-2 к математическому мышлению, применяя метод Reinforcement Learning from Evol-Instruct Feedback (RLEIF) к области математики.

WizardMath с существенным отрывом превосходит все остальные LLM с открытым исходным кодом в решение мат. задач.

🖥 Github: https://github.com/nlpxucan/wizardlm

📕 Paper: https://arxiv.org/abs/2308.09583v1

🤗 HF: https://huggingface.co/WizardLM

☑️ Dataset: https://paperswithcode.com/dataset/gsm8k

ai_machinelearning_big_data

Читать полностью…

Machinelearning

👁 MeViS: A Large-scale Benchmark for Video Segmentation with Motion Expressions

Новый крупномасштабный датасет MeViS для сегментации движущихся объектов на основе текстового ввода.

🖥 Github: https://github.com/henghuiding/MeViS

☑️ Evaluation Server: https://codalab.lisn.upsaclay.fr/competitions/15094

📕 Paper: https://arxiv.org/abs/2308.08479

⭐️ Dataset: https://codalab.lisn.upsaclay.fr/competitions/15094

ai_machinelearning_big_data

Читать полностью…

Machinelearning

FLAIR: A Foundation LAnguage Image model of the Retina

🖥 Github: https://github.com/jusiro/flair

📕 Paper: https://arxiv.org/pdf/2308.07898v1.pdf

🔥 Dataset: https://paperswithcode.com/dataset/imagenet

@ai_machinelearning_big_data

Читать полностью…

Machinelearning

Курс «Английский для аналитиков» Яндекс Практикума

Для специалистов, которые хотят изменить свою профессиональную жизнь и работать в международной команде.
Обучение построено вокруг рабочих ситуаций и полезных для карьеры навыков:

🗣 Самопрезентация. Рассказ о своей роли, задачах, сфере ответственности на поведенческом интервью и в неформальной беседе.
🙌 Работа в команде. Стендапы, планирование спринтов, демонстрация навыков командной работы на собеседовании.
👨‍💻 Общение с заказчиками и исполнителями. Сбор требований у стейкхолдеров и постановка задач для разработчиков.
📈 Презентация результатов работы. Выступление на митапах, неформальное общение с коллегами из отрасли.
📝 Обсуждение решений по проекту. Генерация и аргументация идей, участие в мозговых штурмах.
🚀 Рефлексия и самоанализ. Ретроспектива, ревью, ответы на сложные вопросы.


Запишитесь на бесплатную консультацию. Кураторы определят ваш уровень языка и расскажут подробнее про обучение.

Читать полностью…

Machinelearning

⚡️🧑‍💻 Сберовский ИИ GigaChat вышел в мир

Нейросеть интегрировали с голосовым ассистентом Салют — теперь он доступен в умных колонках SberBoom и запускается голосовой командой «Салют, включи GigaChat».

Тем, у кого пока нет колонок, воспользоваться Гигачатом можно по ссылке.

Читать полностью…

Machinelearning

🔥Platypus: Quick, Cheap, and Powerful Refinement of LLMs

Family of fine-tuned and merged LLMs that achieves the strongest performance and currently stands at first place in HuggingFace's

Cемейство точно настроенных больших языковых моделей (LLM), которое достигло самой высокой производительности и в настоящее время занимает первое место в открытой таблице лидеров LLM HuggingFace на момент выхода этой статьи

Модель 13B Platypus может быть обучена на одном GPU A100 на 25 тыс. вопросов за 5 часов!

git clone https://github.com/lm-sys/FastChat.git
cd FastChat


🖥 Github: https://github.com/arielnlee/Platypus

💻 Project: https://platypus-llm.github.io/

📕 Paper: https://arxiv.org/abs/2308.07317v1

⭐️ Dataset: https://huggingface.co/datasets/garage-bAInd/Open-Platypus

ai_machinelearning_big_data

Читать полностью…

Machinelearning

⚡️🧑‍💻 Awesome AI-Powered Developer Tools

Это список инструментов для разработчиков, основанных на искусственном интеллекте. Эти инструменты используют ИИ для помощи разработчикам в решении таких задач, как написание кода, рефакторинг, отладка, создание документации и т. д.

Githib

ai_machinelearning_big_data

Читать полностью…

Machinelearning

Top 100+ Machine Learning Projects for 2023 [with Source Code]

В этой статье вы найдете 100+ лучших проектов и идей в области машинного обучения, которые будут полезны как начинающим, так и опытным специалистам.

📌 Projects

ai_machinelearning_big_data

Читать полностью…

Machinelearning

SSLRec: A Self-Supervised Learning Library for Recommendation

SSLRec, a novel benchmark platform that provides a standardized, flexible, and comprehensive framework for evaluating various SSL-enhanced recommenders.

SSLRec - это фреймворк основанный на PyTorch с открытым исходным кодом для рекомендательных систем, усовершенствованных с помощью self-supervised learning.

Он удобен в использовании и содержит датасеты код для обработки данных, обучения, тестирования, оценки, а также современные исследовательские модели.

SSLRec предлагает широкий набор полезных функций и простой в использовании интерфейс, упрощающий разработку и оценку рекомендательных моделей.


🖥 Github: https://github.com/hkuds/sslrec

📕 Paper: https://arxiv.org/abs/2308.05697v1

Models: https://github.com/HKUDS/SSLRec/blob/main/docs/Models.md

☑️ Datasets: https://github.com/HKUDS/SSLRec/blob/main/docs/Models.md

ai_machinelearning_big_data

Читать полностью…

Machinelearning

Присоединяйтесь к TechTrain 2023 Autumn — онлайн-фестивалю, посвященному машинному обучению и искусственному интеллекту.

В программе — классическое ML, Computer Vision, NLP, ASR, RecSys, LLMs и MLOps. Обязательно будут обсуждения прикладного использования ML на примере конкретных проектов. Обзор таких тем, как графовые модели, генеративные нейросети, AI в разработке и другое.

Участников ждут как актуальные практики применения ML&AI, так и дискуссии со спикерами и экспертами. 

Проводит фестиваль JUG Ru Group — организатор крупных технических IT-конференций и митапов для разработчиков. Дата проведения: 30 августа.

Читайте подробности и регистрируйтесь бесплатно — на сайте.

Читать полностью…

Machinelearning

❗️Один из важнейших инструментов MLOps — это MLFlow.

▶️ 10 августа в 20:00 мск в рамках онлайн-курса MLOps от OTUS пройдёт открытый урок «MLflow версии 2. Рецепты и пайплайны в машинном обучении».

На открытом уроке вы узнаете:

🔹 О развитии MLFlow и о том, какие усовершенствования вошли в новые релизы (2.x)
🔹 О роли пайплайнов в организации процессов машинного обучения
🔹 Что такое MLFlow recipes и как их использовать для повышения эффективности работы DS

🧑‍💻 Спикером выступит преподаватель OTUS Данила Слепов. Он проектирует AI-системы, разрабатывает архитектуру MLOps платформ.

👉 РЕГИСТРАЦИЯ
https://otus.pw/UrGTq/

Нативная интеграция. Информация о продукте www.otus.ru

Читать полностью…

Machinelearning

Хотите работать с большими данными, строить модели для бизнеса и создавать свои сервисы?

На курсе Start ML за 7 месяцев вы получите все знания и навыки, необходимые сильному ML-специалисту.

Вы научитесь разрабатывать приложения на Python, обучать модели и нейронные сети, а также оценивать их влияние на бизнес с помощью статистики и A/B-тестов — всё под руководством практиков из Яндекс и Raiffeisen.

К концу обучения у вас будет готовый сервис по ранжированию и выдаче релевантных постов в социальной сети, о котором вы сможете рассказать будущему работодателю. А ещё наш HR обязательно поможет вам с трудоустройством — в течение трёх месяцев работу находят 84% наших выпускников.

Новый поток стартует 10 августа. Также на сайте есть бесплатная демоверсия.

[Записаться]

Читать полностью…

Machinelearning

🌉Enhancing Visibility in Nighttime Haze Images Using Guided APSF and Gradient Adaptive Convolution

Experiments demonstrate that our method achieves a PSNR of 30.72dB, outperforming state-of-the-art methods by 14
on GTA5 nighttime haze dataset.

Модель улучшение видимости ночных изображений, путем подавления свечения и усиления слабоосвещенных областей с помощью функции
APSF (Angular Point Spread Function).

🖥 Github: https://github.com/jinyeying/nighttime_dehaze/tree/main

📕 Paper: https://arxiv.org/abs/2308.01738v1

☑️ Dataset: https://www.dropbox.com/sh/7qzmb3y9akejape/AABYf2ZAqn_5vmPsOPg7KqoMa?dl=0

ai_machinelearning_big_data

Читать полностью…
Подписаться на канал