gonzo_ml | Неотсортированное

Telegram-канал gonzo_ml - gonzo-обзоры ML статей

21999

Авторы: Гриша Сапунов, ранее руководитель разработки Яндекс-Новостей, ныне CTO Intento. Области интересов: AI/ML/DL, биоинформатика. Лёша Тихонов, ранее аналитик в Яндексе, автор Автопоэта, Нейронной Обороны... Области интересов: discrete domain, NLP, RL.

Подписаться на канал

gonzo-обзоры ML статей

Поразительно, конечно, изменился рынок за пару лет. Теперь центр топового опенсорса -- Китай.

Читать полностью…

gonzo-обзоры ML статей

Пока не R2, но всё же

https://huggingface.co/deepseek-ai/DeepSeek-R1-0528

Читать полностью…

gonzo-обзоры ML статей

Тем временем продолжаются эксперименты с автообзорами статей в канале /channel/gonzo_ML_podcasts.

Из последнего и свежего:
* Статья от Тегмарка и ко про выучивание сильных узких моделей. Для которых правильный прунинг из большой общей модели оказывается лучше дистилляции, а в целом широкие и разнообразные данные таки нужны для более быстрого и качественного выучивания определённых навыков.
* Статья про ризонинг токены где на модельной задаче с поиском A* и лабиринтами показано, что трассировки CoT не обязательно являются достоверным отображением «рассуждений» модели, и «бессмысленные» промежуточные токены могут быть поразительно эффективны.
* Статья про механистичную оценку способностей трансформеров и SSM, показывающая что модели со схожей поведенческой производительностью могут использовать принципиально разные внутренние стратегии.

Поток статей каждый день валится огромный, всё разобрать нереально, так что буду продолжать делать это автоматически для статей, которые любопытны, но не настолько чтобы разбирать вручную. Режим вручную оставлю для самого вкусного.

Читать полностью…

gonzo-обзоры ML статей

Свежего Бенжио вам в ленту

https://youtu.be/qe9QSCF-d88?si=Xp2zLxiKIcAkVjap

Читать полностью…

gonzo-обзоры ML статей

Также неделя креатива объявляется открытой.

* Lyria 2. Our latest music generation model (waitlist)
* Flow. AI filmmaking tool (US)
* Gemini 2.5 Native audio output. Может всё-таки до ризонинга шёпотом недалеко?

Читать полностью…

gonzo-обзоры ML статей

Про Gemini Diffusion.

Скорость генерации (sampling speed excluding overhead) 1479 tokens / sec!

Читать полностью…

gonzo-обзоры ML статей

Gemini Ultra пока не дождались, зато дождались
* Супербыструю текстовую диффузию в Gemini Diffusion (5x faster than 2.0 Flash Lite)
* Улучшенную Gemini 2.5 Pro Deep Think
* Будущее развитие в направлении World models и Universal AI assistant

Читать полностью…

gonzo-обзоры ML статей

Экспериментальные результаты весьма показательны. Аналоговые базовые модели, обученные по этой методологии, демонстрируют значительно улучшенную устойчивость к аппаратно-реалистичному шуму, который моделировался на основе существующего AIMC-чипа на базе памяти с изменением фазового состояния (PCM-based). При оценке с имитацией аналогового шума эти модели в значительной степени сохраняют свою производительность. Они достигают результатов, сравнимых с цифровыми бейзлайнами (4-битные веса, 8-битные активации), и превосходят стандартные LLM или даже модели LLM-QAT (обучение с учётом квантования) в тех же условиях шума.

Например, аналоговая базовая модель Phi-3-mini-4k-instruct показала падение производительности всего на 3,7% по сравнению со своим FP16-аналогом под воздействием аппаратного шума и квантования. Это заметное улучшение по сравнению с падением на 7,11%, наблюдаемым у готовой модели при её прямом переносе на «железо». Авторы приводят средние значения и стандартные отклонения для оценок в условиях шума, основанные на 10 запусках с разными сидами, что придаёт этим результатам статистическую значимость.

Интересно, что устойчивость, привитая этим аналого-ориентированным обучением, даёт преимущества и при цифровом развёртывании. В статье показано, что эти аналоговые базовые модели можно квантовать после обучения для инференса на низкоточном цифровом оборудовании (например, с 4-битными весами и округлением до ближайшего (round-to-nearest)). При этом они достигают производительности, сравнимой или даже превосходящей модели, обученные с использованием передовых алгоритмов цифрового квантования, особенно при статических ограничениях квантования.

Более того, аналоговые базовые модели демонстрируют лучшее масштабирование вычислений на этапе инференса: их производительность улучшается более значительно, когда им разрешено генерировать несколько ответов и выбирать лучший, по сравнению с традиционно квантованными моделями. Это указывает на более общую устойчивость к низкоточным вычислениям. Модели также в значительной степени сохраняют свои способности следовать инструкциям и обеспечивать безопасность в условиях шума.

Результаты этого исследования открывают важные перспективы. Оно предлагает жизнеспособный путь для развёртывания сложных LLM на высокоэнергоэффективном AIMC-оборудовании, потенциально открывая новые применения, особенно в средах с ограниченными ресурсами или для крупномасштабного инференса, где энергопотребление — основное узкое место. Работа также неявно мотивирует дальнейшую разработку и масштабирование технологии AIMC-чипов, демонстрируя, что проблемы адаптации моделей на программном уровне могут быть эффективно решены. Тот факт, что методология обучения даёт модели, также хорошо подходящие для низкоточного цифрового оборудования, является дополнительным преимуществом, расширяя её применимость.

Авторы открыто говорят и об ограничениях. Обучение этих моделей с миллиардами параметров, даже с использованием предложенной методологии (которая использует лишь часть токенов из оригинального датасета предобучения), остаётся ресурсоёмким. Разрыв в производительности по сравнению с исходными FP16-моделями всё ещё существует, особенно на сложных задачах, требующих рассуждений, таких как GSM8K или MATH-500.

Преимущества от масштабирования обучающих данных, по-видимому, выходят на плато примерно на 20 миллиардах токенов из оригинального датасета предобучения. Это позволяет предположить, что одно лишь количество данных может не устранить оставшийся разрыв. Хотя модель шума, используемая для оценки, получена на основе реального оборудования, её обобщающая способность на весь спектр технологий AIMC-устройств и их уникальные профили шума остаётся открытым вопросом для более широкого внедрения. Модели также наследуют любые риски безопасности, присутствующие в базовых предобученных моделях.

Читать полностью…

gonzo-обзоры ML статей

Напоминаю, что сегодня европейским вечером/западноамериканским утром будет самая большая ежегодная конференция Гугла, Google I/O 2025:

https://io.google/2025/

Я на место не поехал, буду в трансляции смотреть :)

Все ждут больших анонсов, например, Gemini Ultra (опять!)

После кейноутов в секции по AI будет также Хассабис:

https://io.google/2025/explore/pa-keynote-1

Demis Hassabis on the frontiers of AI

Join Demis Hassabis, co-founder and CEO of Google DeepMind and Alex Kantrowitz, host of the Big Technology Podcast, for a visionary conversation about the future of AI and its impact on our world. This marquee session offers a unique opportunity to hear directly from one of the most influential leaders in the field of AI.

Читать полностью…

gonzo-обзоры ML статей

Любопытная движуха

Analog Foundation Models
https://arxiv.org/abs/2505.09663

In this work, we introduce a general and scalable method to robustly adapt LLMs for execution on noisy, low-precision analog hardware. Our approach enables state-of-the-art models including Phi-3-mini-4k-instruct and Llama-3.2-1B-Instruct to retain performance comparable to 4-bit weight, 8-bit activation baselines, despite the presence of analog noise and quantization constraints. Additionally, we show that as a byproduct of our training methodology, analog foundation models can be quantized for inference on low-precision digital hardware. Finally, we show that our models also benefit from test-time compute scaling, showing better scaling behavior than models trained with 4-bit weight and 8-bit static input quantization. Our work bridges the gap between high-capacity LLMs and efficient analog hardware, offering a path toward energy-efficient foundation models.

Читать полностью…

gonzo-обзоры ML статей

В другой задаче применили AlphaEvolve в нахождении эвристики для тайлинга при матричном умножении, используемом в кернелах для Gemini. Здесь надо эффективно работать на входных матрицах разных размеров. Получили ускорение в 23% относительно ручного кернела и сократили время обучения Gemini на 1%. В масштабах Гугла неплохо. Кроме того, вместо месяцев ручной оптимизации потратили дни автоматической. Пример, когда хороший AI позволяет делать ещё более хороший AI быстрее, ускоряем экспоненту.

Пооптимизировали арифметический блок на TPU. Взяли уже сильно оптимизированный Verilog код, смогли устранить ненужные биты, будет интегрировано в выходящий новый TPU.

Ещё применили к имплементации FlashAttention на Pallas+JAX. Работали напрямую с низким уровнем, результатом компиляции XLA -- intermediate representations (IR). Результат оптимизации проверили на корректность, по скорости добились улучшения в 32% на ядре и дополнительных 15% на пре/пост-процессинге. В целом отсюда дорога ко включению в конечном счёте AlphaEvolve в компиляторы.

На матричных умножениях и одной математической задаче сделали абляции. Каждый из компонентов: эволюционный подход, добавление большого контекста, мета-промптинг, эволюция полного файла вместо отдельных строк, использование больших LLM в дополнение к малым (видимо, Pro в дополнение ко Flash) -- всё улучшает результат.

В общем всё прикольно. Ранние эксперименты с использованием LLM для управления поиском и подобное (типа FunSearch) меня не так впечатляли, но теперь результат прям хорош. У нас сейчас в очередной раз происходит какой-то level-up в универсальности. За последние лет десять революции deep learning мы активно двигались от очень специальных однозадачных решений ко всё более общим. Например, картиночные классификаторы сначала было хорошо обучать на конкретную задачу, и мы учили все эти vgg и resnet’ы на закрытом наборе классов. Через некоторое время оказалось, что есть модели, на которых можно уже делать классификацию по открытому набору классов и вообще собирать классификаторы без обучения на уже предобученных моделях (хоть на CLIP). Потом оказалось, что и картиночные модели можно уже не иметь, теперь VLM умеют очень многое, а создание нового решения ещё больше упрощается -- пиши себе промпты и объясняй что нужно нормальным английским языком. Вот здесь с математикой и оптимизациями так же. Были очень специальные модели (AlphaTensor), появились чуть более общие с LLM (FunSearch), а в нынешней итерации они ещё более общие.

Экспертные знания и умения по оптимизации тоже продолжают вытесняться умными алгоритмами, как оно и было весь путь от прихода нейросетей в computer vision. Непонятно, через 3-5 лет кому-нибудь ещё нужно будет вручную заниматься оптимизацией кернелов? Сколько сейчас на земле людей, способных это сделать? И сколько будет? И явно это не предел, будут и ещё более умные блоки, которым просто объясняй что нужно, а то и не объясняй, сами догадаются. Интересно, как бы результаты AlphaEvolve изменились от включения туда Gemini 2.5 вмеcто 2.0. Любопытный был бы не ablation, а такой substitution.

Можно также это всё рассматривать как вариант test-time compute. Какая по большому счёту разница, запускаем мы там ризонинг поверх LLM, какой-то развесистый Tree-of-Thought, или эволюцию? Эволюция явно круче сэмплинга. Что если сделать дистилляцию AlphaEvolve-аугментированной LLM в обычную LLM? А заодно попросить оптимизировать все процессы обучения и инференса этой модели (как собственно уже было сделано в текущей работе для Gemini и шедулинга задач)? Богатые богатеют, экспоненциальные экспоненциируют.

А ещё ведь наверняка можно и более специализированных агентов добавить в такую систему, и с более качественной критикой, и с большими доменными знаниями. Уух, следующая версия AlphaEvolve может быть вообще бомбой. Возможно, это будет своеобразное слияние с AI co-scientist, там не было эволюции кода, был сплошной язык (и риск галлюцинаций), но зато была мультиагентность.

Читать полностью…

gonzo-обзоры ML статей

[DeepMind] AlphaEvolve: A coding agent for scientific and algorithmic discovery
Alexander Novikov, Ngân Vu, Marvin Eisenberger, Emilien Dupont, Po-Sen Huang, Adam Zsolt Wagner, Sergey Shirobokov, Borislav Kozlovskii, Francisco J. R. Ruiz, Abbas Mehrabian, M. Pawan Kumar, Abigail See, Swarat Chaudhuri, George Holland, Alex Davies, Sebastian Nowozin, Pushmeet Kohli and Matej Balog
Статья
Пост

AlphaEvolve -- это coding agent агент, оркестрирующий пайплайн с вызовами LLM и выдающий алгоритм, решающий заданную пользователем задачу. Внутри процедуры оркестрации работает эволюционный алгоритм, постепенно создающий программы, улучшающие скор на автоматических метриках для заданной задачи.

Пользователь должен предоставить механизм автоматической оценки генерируемых решений -- это Python функция evaluate(), мапящая решение в набор скалярных метрик для оценки, которые надо максимизировать. Она может быть как простой и лёгкой, отрабатывающей за доли секунды, так и очень тяжёлой, включающей, например, распределённое обучение сети. Соответственно, задачи требующие ручного экспериментирования, остаются здесь за бортом, текущая версия работает для того, что может быть автоматически оценено.

AlphaEvolve предоставляет API, куда можно отправить код, где часть требующая улучшения помечена комментариями # EVOLVE-BLOCK-START и # EVOLVE-BLOCK-END. Где-то там же в коде находится и функция evaluate(), как и всё остальное, необходимое для связывания всех частей программы воедино.

Эволюционируемая программа не обязана быть финальным результатом, она может быть средством его достижения. Например, найденное решение может быть просто строкой (как часто бывает в эволюционных алгоритмах); функцией определённого вида, определяющей как должно быть создано решение; уникальным поисковым алгоритмом, могущим найти решение при заданном ограниченном бюджете; или ещё чем-то более сложным. Специфика задачи может влиять на выбор подхода, например, для проблем с очень симметричными решениями авторы советуют выводить функции-конструкторы, они получаются более краткими.

Внутри AlphaEvolve и его эволюционного цикла работают несколько компонентов.

Prompt sampler отвечает за шаблоны промптов, включая системные инструкции, а также вставляет в промпт предыдущие найденные решения, засэмпленные из базы программ. Здесь можно многое произвольно расширять: добавлять явные инструкции от пользователя, стохастическое форматирование с заданными извне распределениями, рендеринг результатов оценки, эволюционировать мета-промпт.

Ансамбль LLM, в статье комбинация Gemini 2.0 Flash и Gemini 2.0 Pro, используется для креативной генерации. Такой микс даёт возможность быстрой генерации множества гипотез через Flash и более качественные рекомендации от более медленной Pro. В целом система model-agnostic, можно использовать разное. LLM просят генерить изменения в коде в виде серии диффов, какой блок кода заменять на какой. Но можно и просить заменять код целиком, если так удобнее.

Evaluation содержит в себе набор оценщиков. В простом случае надо вызывать переданную пользователем функцию evaluate(). В реальности есть также различные опциональные добавки: каскады от более простых примеров к более сложным; фибдек от LLM, когда проще описать желаемые свойства решения, нежели оценивать; параллелизация оценки. Может считаться сразу множество метрик (функция evaluate() может возвращать несколько) и авторы утверждают, что даже если важна только единственная метрика, оптимизация по множеству метрик даёт лучше результат. Что мне немного удивительно, потому что в многокритриальной оптимизации вроде как не всё так просто, и редко когда получается увеличивать сразе все метрики, или хотя бы не ухудшать остальные при увеличении одной.

База программ или evolutionary database, хранящая найденные решения и оценки их качества. Здесь важно балансировать exploration и exploitation, так что база реализует алгоритм вдохновлённый комбинацией MAP elites и island-based population models.

Читать полностью…

gonzo-обзоры ML статей

Веса BLT опубликованы:
https://huggingface.co/facebook/blt

Читать полностью…

gonzo-обзоры ML статей

Пока я путешествую и обзоры писать некогда, давайте немного не про ML, а про историю криптографии.

Долгое время я считал, что немецкую шифровальную машину Энигма взломал Тьюринг, и "Бомбу" тоже построил он.

Впервые я узнал о том, что до Тьюринга были польские математики Генрик Зыгальский, Мариан Реевский и Ежи Ружицкий, из книги Turing's Vision от MIT Press. Потом уже и в Википедии обнаружил.

Они первые начали взламывать шифры Энигмы, Реевский первым создал свою Бомбу, а Тьюринг делал уже последующую для усложнённого шифра Энигмы.

И вот меня занесло в Познань, где всё это и происходило, и здесь я нашёл отличный музей Энигмы, где подробно рассказывается история этих польских математиков.

Вот вам немного фото из этого прекрасного музея, включая Бомбу Реевского.

Читать полностью…

gonzo-обзоры ML статей

В дополнение к посту о следующем майлстоуне — обучении LLM на актуальной учебной литературе — хочу обсудить конкретное проявление тренда: доменно-специфичные модели (DLLM).

DLLM могут стать самым заметным дизрапшном. По разным оценкам ежегодно выходит 2,8-3,3 млн новых научных статей — человек их не прочтёт, а копилот-модель сможет.

Вероятнее всего, в большинстве значимых областей появятся модели-эксперты, способные отвечать на вопросы по этой области, помогающие решать текущие задачи и дать человеку буст уровня x10 к текущей производительности. Можно будет иметь эксперта по современной физике, супер-интеллектуального помощника в области материаловедения, глубокого эксперта в software engineering, советника в медицине или сельском хозяйстве и так далее.

Между собой модели много чем будут отличаться — разные типы знаний, про многие из которых другим моделям знать не обязательно (физика твёрдого тела не требуется компилятору; медицинской модели не критично знание лицензий ПО), разные требования к лицензиям и безопасности, разные процедуры оценки качества и так далее. Будет и везде своя регуляторика, проверки и сертификации.

Нужна мультимодальность, но на более детальном уровне она будет разной — даже для картиночной модальности объекты будут сильно разными: 3D молекулы, медснимки, UML-диаграммы, фазовые графики — под каждую дисциплину своя суб-модальность.

Не думаю, что DLLM будут покрыты текущими производителями универсальных моделей. Их не хватит, чтобы глубоко копнуть во все эти области и заниматься постоянным обновлением и контролем качества. Но вероятно они предоставят хорошие базовые модели и инфраструктуру для их тюнинга и использования. А другие люди и организации, обладающие уникальными данными и экспертизой, будут DLLM создавать. Этот процесс, вероятно, придётся организовывать самим.

Важными измерениями здесь будут scale-диапазон (on-device → GPU-кластер), и открытая или закрытая (что и как ты контролируешь). В edge и on-device, думаю, будет особенно много интересного в ближайшие годы. Во многих местах надо уметь работать без интернета, особенно если это какой-то непрерывный техпроцесс.

Траектория с самостоятельным предобучением модели (уровня сотен миллиардов — триллионов токенов) останется для избранных и самых богатых, а совсем массовым сценарием будет адаптация базовой модели, в облаке или локально.

Данные по сути распадаются на три разных слоя:
1. Core corpus — стабилизированные источники (учебники, ГОСТы, review-статьи).
2. Dynamic feed — preprints, патенты, свежая пресса (auto-RAG-pipeline).
3. Telemetry (приватные логи и фидбек) — чтобы модель постепенно училась на контексте конкретной организации.

Особая ценность: способность держать эти слои в актуальном состоянии (а это уже SaaS-ниша под названием «DataOps for DLLM»). Core обновляется раз в квартал, Dynamic feed — ежедневный (или даже streaming) ingest препринтов и патентов через RAG-пайплайн, Telemetry — online fine-tuning / RLHF.

Отдельно поверх этих слоёв лежит слой комплаенса: для Core-корпуса важна лицензия, для Dynamic — проверка авторских прав, для Telemetry — GDPR/локальные законы.

Ну и в реальности это будет не просто DLLM, а агент с DLLM внутри, обвешанный специальными дополнительными инструкциями, тулами, да и другими агентами.

Большая тема — доменные бенчмарки, а может в пределе и сертификация. С одной стороны без бенчмарков доверия не будет, с другой стороны всё равно надо проверять на своих данных и задачах, так или иначе у каждой компании своя специфика и свои требования, и разные модели могут вести себя по-разному.

У DLLM профиль рисков отличается от общей модели — хорошая доменная модель ошибается реже, но цена ошибки выше: неправильная дозировка, некорректный отчёт. Отсюда — необходимость доменного аудита, traceable citations, где-то explainability. Вероятно, появится рынок независимого red-team-аудита, который регуляторы и страховщики будут учитывать при выводе модели в прод.

Читать полностью…

gonzo-обзоры ML статей

Картинка подоспела

https://x.com/deepseek_ai/status/1928061589107900779?t=K2G9KvaYQP3Sz_mtWKM1DA&s=19

Читать полностью…

gonzo-обзоры ML статей

Глубже — значит умнее? Или просто длиннее? Разбираемся, как языковые модели используют свои слои

В продолжение темы про mech interp в трансформерах, свежая работа Криса Маннинга и ко разбирает важность глубины трансформера и приходит к выводам, что более глубокая сеть скорее растягивает те же вычисления на большее число слоёв.

Это прикольная тема, я тоже экспериментировал с выкидыванием слоёв в LLM (можете взять код и поэкспериментировать на более новых моделях, или на более глубоких, у кого DGX под рукой есть), и в канале мы регулярно писали про подобные работы (Transformer Layers as Painters или LayerShuffle).

Ждём более умных подходов к обучению, им явно есть место!

P.S. Обновил автогенератор ревью и среди прочего пофиксил там глупую багу, из-за которой на перевод отправлялась не самая финальная версия ревью. Теперь должно стать ещё лучше, особенно это помогло в борьбе с галлюцинациями и выдумыванием ссылок. До канала такие примеры не доезжали, но проблема была регулярная.

Читать полностью…

gonzo-обзоры ML статей

Yo!

https://www.anthropic.com/news/claude-4

Читать полностью…

gonzo-обзоры ML статей

В семействе Gemma пополнения!

* DolphinGemma (предобучена на звуках коммуникации дельфинов) уже не новость, но всё равно прикольно. Помните Project CETI, кстати?
* SignGemma для языка жестов (в первую очередь American Sign Language)
* MedGemma для медицины
* Gemma 3n с матрёшками внутри для эффективного on-device, уже упоминали сегодня.

Кстати, бахнул авторазбор статьи про MatFormer, на базе которого матрёшечная Gemma построена. Читать тут: /channel/gonzo_ML_podcasts/144

Читать полностью…

gonzo-обзоры ML статей

Дождались ультры. Но не той.

250$ в месяц однако...

Читать полностью…

gonzo-обзоры ML статей

А также появилась новая Gemma 3n, Matryoshka Transformer (MatFormer) для on-device deployments.

https://ai.google.dev/gemma/docs/gemma-3n

Читать полностью…

gonzo-обзоры ML статей

Направления будущих исследований, указанные авторами, включают изучение улучшений качества синтетических данных, разработку более ресурсоэффективных методов адаптации (возможно, с использованием низкоранговых адаптаций или методов постобучения) и продолжение усилий по сокращению разрыва в точности на задачах, требующих рассуждений.

В целом, это качественное исследование, предлагающее надёжное, масштабируемое и продуманное решение критической проблемы на стыке LLM и новых аппаратных средств. Демонстрируя, что большие базовые модели могут быть эффективно адаптированы к специфике аналоговых вычислений («analog-aware»), работа открывает путь к более энергоэффективному ИИ и продвигает эту область исследований. Хотя проблемы остаются (в частности, в сокращении разрыва в производительности на самых сложных задачах и обеспечении широкой аппаратной совместимости), это исследование закладывает прочную основу и даёт основания для оптимизма в отношении будущего аналоговых ИИ-ускорителей.

Читать полностью…

gonzo-обзоры ML статей

Analog Foundation Models
Julian Büchel, Iason Chalas, Giovanni Acampa, An Chen, Omobayode Fagbohungbe, Sidney Tsai, Kaoutar El Maghraoui, Manuel Le Gallo, Abbas Rahimi, Abu Sebastian
Статья: https://arxiv.org/abs/2505.09663
Код: https://github.com/IBM/analog-foundation-models

Неуклонный рост размеров и сложности больших языковых моделей (LLM) выдвинул на первый план острую необходимость в более энергоэффективных вычислительных парадигмах. Аналоговые вычисления в памяти (Analog In-Memory Computing, AIMC) выглядят здесь многообещающим решением: они потенциально способны существенно снизить энергопотребление за счёт выполнения умножения матрицы на вектор непосредственно в массивах памяти. Однако у AIMC-оборудования есть свои недостатки, главным образом — присущий ему шум и жёсткие ограничения квантования, которые могут серьёзно ухудшить производительность стандартных, предобученных LLM.

В этой статье авторы задаются ключевым вопросом: можно ли современные мощные LLM надёжно адаптировать для развёртывания на таком шумном, низкоточном аналоговом оборудовании? И если да, то как? Исследователи представляют «аналоговые базовые модели» (собственно, Analog Foundation Models), предлагая общий и масштабируемый метод для достижения именно этой цели. Они демонстрируют, что даже передовые модели могут сохранять производительность, сравнимую с сильными цифровыми бейзлайнами квантования, несмотря на неидеальности аналоговых вычислений.

Ключевая проблема заключается в том, что готовые LLM (off-the-shelf LLM), обычно обучаемые в форматах с высокой точностью (например, FP16), крайне чувствительны к аналоговому шуму и низкоточному квантованию, свойственному AIMC-системам. Как отмечают авторы, прямое развёртывание этих моделей на AIMC-оборудовании часто приводит к значительному падению производительности. Хотя предыдущие исследования изучали обучение с учётом аппаратных особенностей (Hardware-Aware Training, HWA), они преимущественно фокусировались на моделях меньшего размера, часто из области компьютерного зрения, или делали менее реалистичные предположения о характеристиках оборудования. Нынешняя работа выделяется тем, что нацелена на высокоёмкие, предобученные LLM, такие как Phi-3-mini и Llama-3.1 8B — модели, чьи исходные массивные датасеты предобучения зачастую недоступны.

Предложенная методология представляет собой тщательно проработанный трёхэтапный процесс. Сначала генерируются синтетические обучающие данные путём итеративной выборки из целевой предобученной LLM. Это позволяет обойти необходимость в оригинальных датасетах для обучения — важнейший практический момент. Затем новая «аналоговая базовая модель» обучается на этих синтетических данных с использованием дистилляции знаний (knowledge distillation), стремясь имитировать поведение исходной высокоточной модели.

Вся соль здесь в интегрированных на этом этапе техниках обучения с учётом аппаратных особенностей (HWA). К ним относятся:
* обучаемые статические диапазоны квантования для входных данных (имитируют цифро-аналоговые преобразователи (digital-to-analog converters));
* фиксированное глобальное статическое квантование выходных данных (имитирует аналого-цифровые преобразователи (analog-to-digital converters));
* поканальное добавление аддитивного гауссовского шума к весам во время прямого прохода (для имитации шума устройства);
* итеративное отсечение (clipping) весов после каждого шага оптимизатора (для поддержания компактного распределения весов, подходящего для энергонезависимых запоминающих устройств (non-volatile memory devices)).

Такой набор методов — это прямой ответ на известные ограничения AIMC-оборудования: например, необходимость статических диапазонов квантования (вместо динамических настроек для каждого токена, распространённых в цифровом квантовании) и неизбежное присутствие аналогового шума. Использование синтетических данных и дистилляции — прагматичное решение для адаптации проприетарных или очень больших моделей без доступа к их оригинальным обучающим корпусам.

Читать полностью…

gonzo-обзоры ML статей

Это прекрасно. Ernie and Bert.

Читать полностью…

gonzo-обзоры ML статей

Текущая работа также является интересным развитием по части эволюционных алгоритмов. Раньше там приходилось писать различные кастомные операторы (типа скрещивания или мутации в случае генетических алгоритмов, коих я сам написал огромное количество). Теперь ничего этого делать не надо, LLM сама решает как и куда эволюционировать решение, неявно реализуя те же операторы, но пользуясь всем мировым знанием из претрейна. И я думаю, доменно-специфичные LLM могли бы здесь быть ещё сильно лучше. И наверняка будут.

Это всё очень прикольно. Long live LLM-guided evolution!

Приятно также видеть много знакомых имён в авторах или благодарностях. Всем привет!

Читать полностью…

gonzo-обзоры ML статей

Всё целиком оформлено как асинхронный пайплайн (спасибо питонячьему asyncio), где множество задач работают параллельно и дожидаются результата от предыдущих шагов, когда требуется. В пайплайне есть контроллер, LLM сэмплеры и узлы оценки. Всё оптимизировано под throughput, а не время выполнения одного конкретного вычисления. Максимизируют количество проверяемых идей за фиксированный вычислительный бюджет.

Это в целом всё, система не выглядит суперсложной. По сравнению с прерыдущими AlphaTensor, AlphaDev, FunSearch и т.п. всё больше “интеллекта” выносится на сторону LLM.

С FunSearch есть отдельное сравнение в таблице, если кратко, то три ключевых момента. FunSearch работал на уровне одной питоновской функции, здесь работа на уровне всей кодовой базы, сколько имеется, и не обязательно на питоне. У FunSearch была одна objective function, здесь же многокритериальная оптимизация. Наконец, внутри FunSearch были довольно маленькие LLM, обученные на коде, а здесь одна из лучших фронтирных моделей.

Итак, применили AlphaEvolve к различным задачам.

Например, поиск декомпозиции тензора для нахождения способа перемножения матриц, та же самая задача, которую решал узкоспециализированный AlphaTensor, подробнее про саму задачу рекомендую прочитать в оригинальном посте. Стартовали со стандартного градиентного алгоритма, включающего инициализатор, лосс функцию для реконструкции тензора, и оптимизатор Adam. С этой стартовой точки AlphaEvolve вывел новый алгоритм и улучшил SoTA результаты для матричных умножений 14 разных размеров ⟨𝑚, 𝑛, 𝑝⟩. Интересно, что в таблице заявлено улучшение для размера ⟨4, 4, 4⟩, где получили 48 скалярных умножений вместо 49. AlphaTensor правда получал 47, но там была модульная арифметика, а здесь это число для комплексной.

Другое направление включало 50 математических задач из анализа, комбинаторики, теории чисел и геометрии, где надо было находить объекты или делать построения с определёнными свойствами, оптимальными или около-оптимальными по некоторой мере. В 75% случаев AlphaEvolve переоткрыл известное лучшее решение, в 20% улучшил его. Во всех случаях стартовали со случайного или простого решения. По сравнению с классическими подходами AlphaEvolve более универсален и не требует какого-то особого затачивания на конкретную задачу, он сам способен обнаружить эффективные паттерны для поиска решения, что открывает дорогу к широкомасштабному исследованию разных задач. Здесь мы имеем сильно улучшенный FunSearch.

Главная методологическая инновация здесь -- это способность выводить (в смысле эволюционировать) эвристические алгоритмы поиска, вместо того чтобы сразу выводить сами построения. В частности использовалась стратегия итеративного улучшения, когда на каждом шаге алгоритму давали лучшее решение предыдущего шага и фиксированный бюджет (1000 секунд), и модель должна была найти более хорошее построение. Так отбирались эвристики, способные улучшать уже найденные хорошие решения, и финальное построение являлось результатом цепочки различных специализированных эвристик -- ранние специализировались на улучшении простых или случайных начальных состояний, поздние на файнтюнинге околооптимальных решений.

Найденные математические результаты и результаты тензорных декомпозиций собраны в колабе.

Применили AlphaEvolve и к инфраструктурным задачам Гугла -- шедулингу задач на кластере, управляемом Borg. Там надо было раскидывать задачи по машинам с учётом доступности и требований по CPU/memory. Функция должна была выдавать priority score для каждой машины под текущую задачу. AlphaEvolve нашёл эвристику, улучшившую текущую эвристику Гугла в продакшне, что привело к экономии 0.7% ресурсов. В отличие от результатов DRL это ещё и проще и понятнее.

Читать полностью…

gonzo-обзоры ML статей

Очередная интересная движуха, AlphaEvolve

https://deepmind.google/discover/blog/alphaevolve-a-gemini-powered-coding-agent-for-designing-advanced-algorithms/

Читать полностью…

gonzo-обзоры ML статей

Sakana опять делает что-то интересное!

Our approach has two core innovations: (1) neuron-level temporal processing, where each neuron uses unique parameters to process a history of incoming signals for fine-grained temporal dynamics, and (2) neural synchronization, used as a direct latent representation to modulate data and produce outputs, encoding information directly in the timing of neural activity.

https://sakana.ai/ctm

Читать полностью…

gonzo-обзоры ML статей

Первые инкарнации вроде Med-PaLM 2 в здравоохранении, BloombergGPT в финансах, Sec-PaLM 2 в безопасности показывают, что рецепты “общее → узкое” уже работают; ближайшие пару лет зададут темп дальнейшей фрагментации рынков LLM на вертикали.

Читать полностью…

gonzo-обзоры ML статей

Мне кажется, одним из следующих больших майлстоунов в обучении фронтирных моделей будет обучение на большом, актуальном и курируемом массиве учебной и научной литературы.

Это всё в целом как бы не новая идея. Модели и сейчас уже весьма неплохо отвечают на разные актуальные вопросы, решают сложные задачи уровня вплоть до олимпиадного и прогрессируют крайне быстро. Какие-то модели откровенно на книгах и обучаются, см. “Textbooks Are All You Need” (https://arxiv.org/abs/2306.11644, разбирали тут /channel/gonzo_ML/1871). Злые языки правда утверждают, что обучаются они на тест сете, отсюда развитие концепции до “Pretraining on the Test Set Is All You Need” (https://arxiv.org/abs/2309.08632). Другие авторы моделей очень не любят раскрывать состав своих трейн сетов, и не факт, что из-за наличия там тест сетов, может также из-за сложностей с авторским правом.

То есть мы вроде как бы и так уже там или по крайней мере идём. Но я думаю, что до реально масштабного обучения на учебниках, нам ещё надо сколько-то пройти. И попутно надо решить несколько вопросов:

1) Авторское право. Хорошие учебники кому-то принадлежат, защищены авторским правом и они не в опенсорсе с удобной лицензией. И нескоро там будут. Это сложная и многогранная тема и проблема требует системного решения, которое должно включать и экономические стимулы. Пользы от того, что кто-то сделал хороший учебник, а прибыль потом извлекает автор обученной на нём модели, тоже немного. Как-то должна перестроиться вся экономика вокруг таких моделей и данных.

2) Реально большой эффективный контекст, достаточный чтобы модель смогла интернализировать большие области знаний ничего не теряя, а также по ходу дела подтягивать свежие результаты, идеально без переобучения модели. Учебники скорее всего должны быть какого-то нового формата. Возможно частью решения будут являться knowledge graphs, но возможно не будут, большого их количества по разным областям как-то не появилось.

3) Зрелый RAG и иные тулы для работы с новой информацией. Тут вроде ничего нового, будет нужна верификация и оценка качества, оркестрация для регулярных обновлений и предобработки новых книг, статей и прочего, и в целом выстраивание системы, где интеграция старого и нового знания происходит более-менее автоматически.

4) Мультимодальность как минимум для текста + картинок, которых везде миллион и их надо хорошо понимать -- диаграммы, графики, схемы, математические и другие формулы. Видео тоже может быть полезно, но начать можно и без него. Интересно как бы могло выглядеть хорошее обучающее видео не для человека, а для модели?

На выходе получится модель, или даже скорее агент-помощник учёного, обладающий недюжинными способностями в разных областях знаний. Copilot для учёного, а со временем и авто-учёный, куда многие и так идут. А также заодно и тьютор или Букварь для благородных девиц.

Где-то рядом находится вопрос про safety, misuse, dual use и прочие опасные способности моделей. Тестирования моделей на такие способности уже давно есть (https://www.aisi.gov.uk/work/pre-deployment-evaluation-of-anthropics-upgraded-claude-3-5-sonnet) и описанное здесь обучение риски безусловно поднимет. Но бенефиты, я уверен, велики, и явно будет разделение на модели для людей проверенных и для всех остальных.

Большая и самая значимая часть проблем здесь, как видно, не совсем техническая.

Читать полностью…
Подписаться на канал