data_analysis_ml | Неотсортированное

Telegram-канал data_analysis_ml - Анализ данных (Data analysis)

10807

Аналитика данных админ - @haarrp @ai_machinelearning_big_data - Machine learning @itchannels_telegram - 🔥лучшие ит-каналы @pythonl - Python @pythonlbooks- python книги📚 @datascienceiot - ml книги📚

Подписаться на канал

Анализ данных (Data analysis)

Veo 2 от Google доступен для всех — создавать кинематографичные ролики можно в AI Studio.

Лимит: 3-5 видео в день, зато БЕСПЛАТНО.

@data_analysis_ml

Читать полностью…

Анализ данных (Data analysis)

🎙 Новый выпуск DEPLOY подкаста — включай, если интересуешься техноподходом в реальных продуктах

Гость выпуска — Антон из Яндекса, эксперт по рекламным технологиям.

С 2013 года он, прошёл путь от Perl до C++ и сегодня отвечает за инфраструктуру и качество таких сервисов, как Яндекс.Директ и Метрика.

Звучит серьёзно — так оно и есть.
Но при этом выпуск получился очень живой, прикладной и честный.

Что внутри:

🟡 Как реклама помогает бизнесу продавать, а пользователям решать свои задачи — за счёт системы рекомендаций
🟡 Зачем нужны нейросети в реальном времени и как они влияют на user experience
🟡 Как проектировать высоконагруженные системы, чтобы они не разваливались под нагрузкой
🟡 Что такое «перфоратор» и как оптимизировать нагрузку на сервера
🟡 Почему без нормальной командной структуры и A/B-тестов далеко не уедешь
🟡 Как устроена разработка в Яндексе, как решаются конфликты и почему важно менторство

Антон очень чётко объясняет сложные штуки, не уходит в абстракции и при этом даёт полезный взгляд на реальную разработку, архитектуру и работу больших продуктовых команд.

📍 Смотри/слушай:

⚫️ YouTube
⚫️ VK
⚫️ Rutube

Подкаст — must listen, если ты работаешь с ML, инфраструктурой, рекламой или просто хочешь понять, как всё это устроено в настоящей продовой среде.

Читать полностью…

Анализ данных (Data analysis)

📚 MIT 6.S191 – Лекция 7: Генеративный ИИ для медиа
Выступает Doug Eck — ведущий исследователь Google Research, один из создателей MusicLM и Imagen.

🎨 В видео рассказывается:
▪ как ИИ генерирует музыку, изображения, текст и видео
▪ примеры от Google: MusicLM, Imagen
▪ обсуждаются границы возможностей генеративных моделей
▪ поднимаются этические и социальные вопросы

▶️ Смотреть: https://www.youtube.com/watch?v=ZNodOsz94cc

@data_analysis_ml

Читать полностью…

Анализ данных (Data analysis)

🧠🔍 Kimina-Prover-Preview — мощный инструмент от MoonshotAI для автоматического построения доказательств в логике первого порядка с использованием LLM.

➡️ Что это?

Kimina — это "LLM-aided theorem prover", который комбинирует эвристический поиск с языковыми моделями, чтобы строить формальные доказательства по заданной цели и предпосылкам.

💡 Особенности:
▪ Поддержка логики первого порядка (FOL)
▪ Использует LLM (через API OpenAI, Claude и др.) для генерации обоснований
▪ Интеграция с Lean для проверки корректности
▪ Поддерживает кастомные промпты и множественные режимы поиска

🧪 Как работает:
Формулируется цель и список предпосылок

LLM предлагает следующий логический шаг

Инструмент проверяет, валиден ли шаг с точки зрения формальной логики

Если успешно — продолжается доказательство

🛠 Установка:


git clone https://github.com/MoonshotAI/Kimina-Prover-Preview.git
cd Kimina-Prover-Preview
pip install -r requirements.txt


📎 GitHub: github.com/MoonshotAI/Kimina-Prover-Preview

Читать полностью…

Анализ данных (Data analysis)

🧠 DeDoDe — новый подход к локальному сопоставлению признаков

Проект DeDoDe ("Detect, Don't Describe — Describe, Don't Detect") разделяет процессы детектирования и описания ключевых точек на изображении, обеспечивая высокую точность и гибкость при сопоставлении.

📌 Особенности:
- Детектор обучается на 3D-устойчивости точек
- Дескриптор обучается отдельно на задаче сопоставления
- Поддерживает архитектурную гибкость и повторное использование
- Открытый код на Python, PyTorch, доступен в репозитории

📄 Статья (3DV 2024): arXiv 2308.08479
🆕 Обновление v2: arXiv 2404.08928

🔗 Репозиторий: github.com/Parskatt/DeDoDe

@data_analysis_ml

Читать полностью…

Анализ данных (Data analysis)

Как сократить расходы на инфраструктуру с GPU?

23 апреля в 12:00 Selectel проведет вебинар для DevOps- и Data-инженеров, техлидов и менеджеров ML-проектов.

Приходите, чтобы обсудить возможности доступных GPU-карт, узнать о кейсах подбора инфраструктуры с GPU и шести способах сократить на неё расходы.

Вебинар бесплатный. Посмотрите полную программу и зарегистрируйтесь по ссылке: https://slc.tl/gdx10

Чтобы не пропустить встречу и узнавать о других митапах, воркшопах и бесплатных курсах Selectel, подписывайтесь на @selectel_events

Реклама. АО «Селектел», ИНН 7810962785, ERID: 2VtzqvnomoF

Читать полностью…

Анализ данных (Data analysis)

🤖 InternVL 3 — новый мощный мульти-модальный ИИ от OpenGVLab!

✨ Доступны размеры 1B / 2B / 8B / 9B / 14B / 28B / 38B

📌 Что нового:
- Улучшено восприятие и логика по сравнению с InternVL 2.5
- Нативное мультимодальное обучение улучшает язык
- Построен на InternViT encoder + Qwen2.5VL decoder
- Улучшает даже Qwen2.5VL

🧠 Что умеет:
- Рассуждение в мультимодальном виде
- Работа с документами
- Поддержка ИИ агентов

🔓 MIT License

🔗 Подробнее

Читать полностью…

Анализ данных (Data analysis)

Дружелюбная встреча для аналитиков от команды Международных проектов Яндекс Поиска.

Приходите в штаб-квартиру Яндекса "Красная Роза" 13 апреля — мы расскажем, как устроена команда Международных проектов Поиска, из чего в ней состоит аналитика и каким образом с этим связаны Яндекс Игры.

В финале встречи эксперты из Яндекса проведут для участников диагностику навыков аналитики и математической статистики — если пройдете успешно, мы засчитаем это как успешную техническую секцию при собеседовании в Яндекс.

Зарегистрироваться на Welcome Time для аналитиков можно здесь до 12 апреля

Читать полностью…

Анализ данных (Data analysis)

✔️ Проверьте свои знания: пройдите тест по продвинутому инструментарию работы с данными

Успешно ответите на 20 вопросов за 25 минут — сможете поступить на курс «Data Warehouse Analyst» от Otus.

На курсе вы освоите:
- Навыки построения ELT-pipelines: Airflow, Nifi, Airbyte
- Принципы работы аналитических СУБД: Redshift, Greenplum, Clickhouse
- Лучшие практики моделирования данных: dbt, Data Vault
- Визуализацию и BI: Metabase, Superset, DataLens
- Продвинутую аналитику: KPI, Funnels, Marketing Attribution, Cohort, RFM
- DevOps-практики: Continuous Integration, Github Actions

➡️ Начать тестирование: https://otus.pw/74Wgc/?erid=2W5zFH7SvQG

#реклама
О рекламодателе

Читать полностью…

Анализ данных (Data analysis)

Записка на двери: ушёл на One Day Offer для NLP-специалистов — буду поздно и, возможно, с оффером мечты!

19 апреля Сбер приглашает амбициозных спецов стать частью команды стратегии и развития Сбера, чтобы создавать инновации.

Хочешь сказать: «Да, я тот самый автор GigaChat/Llama/Falcon/AI-помощника»?
Велком на One Day Offer!

Читать полностью…

Анализ данных (Data analysis)

Приглашаем вас на вебинар, посвящённый возможностям решения "Экстрактор 1С", системы Гларус BI, совместных задач.

Основные темы мероприятия:
✔️ Основные инструменты и технологии для выгрузки данных из 1С;
✔️ В чем минусы различных подходов и методов выгрузки данных;
✔️ Экстрактор 1С: эффективное и универсальное решение.
✔️ Зачем нужна BI аналитика бизнесу?
✔️ Разбираем разные мифы, сложившиеся вокруг BI.
✔️ Разбираем как в Glarus BI создать понятный и полезный дашборд за несколько минут.
✔️ С чего начать внедрения BI небольшим компаниям, чтобы избежать лишних потерь времени и денег?
✔️ Разбираем экономику внедрения и эксплуатации BI системы.
✔️ Ответы на вопросы.

Спикеры мероприятия:
📢 Пыстин Степан (технический директор в компании “Денвик Аналитика”)
📢 Козырев Игорь (сооснователь компании "Glarus Digital")

Зарегистрируйтесь на мероприятие по ссылке:
https://pruffme.com/landing/u1257797/tmp1742980942

С нетерпением ждем вас 11 апреля в 13:00 по Мск!

Реклама: ООО "Денвик Аналитика"
ИНН: 1101178666. Erid= 2VtzqusphAh

Читать полностью…

Анализ данных (Data analysis)

Оптимизируем работу со Spark и строим рекомендательные системы

Многие рекомендательные системы строятся на Spark, но при обработке больших данных с ним часто возникают проблемы. Кроме этого, это недешевое решение.

На бесплатном вебинаре 15 апреля в 17:00 расскажем, как оптимизировать работу со Spark, и в реальном времени обучим модель, чтобы показать эффективность нашего подхода.

Что еще обсудим

🔹 Как выстроить архитектуру для рекомендательных систем в облаке, On-premise или гибриде.
🔹 Как оптимизировать расходы и работу со Spark.
🔹 Workshop: как в облачном Spark сделать рекомендательную систему для определения степени рисков ишемической болезни сердца.

Кому будет полезен вебинар

⚫️ML-инженерам.
⚫️Архитекторам, Data-инженерам, Data-аналитикам.
⚫️Руководителям ML-направлений и Data-офисов.

Зарегистрироваться

Читать полностью…

Анализ данных (Data analysis)

🌟 Kimi-VL: VLM с MoE, ризонингом и контекстом 128K.

Moonshot AI опубликовала веса Kimi-VL — открытой VLM, которая объединяет обработку текста, изображений и видео. Благодаря архитектуре MoE модель активирует всего 2.8 млрд. параметров в языковом декодере, обеспечивая скорость, сопоставимую с компактными аналогами, и результативность флагманских решений.

Главное преимущество Kimi-VL — способность анализировать длинные контексты до 128 тыс. токенов, что делает её идеальной для работы с объемными документами, длинными видео или сложными мультимедийными задачами.

Основу модели составляет визуальный энкодер MoonViT, оптимизированный для нативной обработки изображений любого разрешения без необходимости разбивать их на части. Это позволяет точно распознавать текст, графики или UI-интерфейсы даже в высокодетализированных скриншотах.

Например, на бенчмарке InfoVQA модель показывает точность 83.2%, обходя даже GPT-4o. В задачах OCR Kimi-VL достигает 86.7% на OCRBench, что ставит её в ряд лучших в индустрии.

Разработчики также представили Kimi-VL-Thinking — версию с расширенными возможностями CoT. Благодаря использованным RL и длительному CoT-тюнингу она демонстрирует впечатляющие результаты в математических и академических задачах: на MathVista точность составила 71.3%, а на MMMU — до 61.7%, что лучше, чем у Gemma-3-12B-IT.

В тестах Kimi-VL превосходит конкурентов в работе с агентами: на OSWorld её результат 8.22% выше, чем у GPT-4o (5.03%), а на WindowsAgentArena — 10.4%. Для длинных видео модель набирает 64.5% на LongVideoBench, подтверждая способность анализировать часовые записи без потери ключевых деталей.

Модели доступны на Hugging Face в двух вариантах:

🟢Kimi-VL-A3B-Instruct для стандартных задач;

🟠Kimi-VL-Thinking для сложных рассуждений.

▶️ Инференс через Transformers занимает несколько строк кода — достаточно загрузить изображение, задать запрос и получить подробный ответ.


📌Лицензирование: MIT License.


🟡Набор моделей
🟡Техотчет
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #VLM #KimiAI #MoonShotAI

Читать полностью…

Анализ данных (Data analysis)

Летняя школа аналитиков-разработчиков Яндекса: набор открыт

В этом году впервые можно выбрать направление для углубленного изучения — Data Engineering или Data Science. В течение всего лета вы сможете изучать инструменты анализа данных и научитесь применять их на практике.

Со 2 июня по 27 июля участников ждут занятия в онлайне, а с 28 июля по 24 августа — работа в фулстек-командах офлайн в офисах Яндекса или онлайн.

Что нужно знать?

Основы программирования на Python
Как решать прикладные задачи с использованием любого диалекта SQL или Pandas
Базу теории вероятностей и математической статистики

По итогам прохождения интенсива, вы сможете попасть на стажировку или получить оффер. По статистике, более половины стажеров переходят в штат компании.

Не откладывайте — регистрация открыта до 27 апреля. Подать заявку можно здесь.

Читать полностью…

Анализ данных (Data analysis)

✔️ Nomic Embed Multimodal 7B: новая мультимодальная модель эмбедингов с открытым исходным кодом для текста, изображений, PDF-файлов и графиков.

- SOTA визуального поиска документов
- Два варианта ((Colbert + dense models)
- Открытые веса, код и данные
- Лицензия Apache 2.0

🟡Models: https://huggingface.co/collections/nomic-ai/nomic-embed-multimodal-67e5ddc1a890a19ff0d5807
🟡Docs: https://docs.nomic.ai/atlas/embeddings-and-retrieval/guides/pdf-rag-with-nomic-embed-multimodal
🟡Colab: https://colab.research.google.com/github/nomic-ai/cookbook/blob/main/guides/pdf-rag-nomic-embed-multimodal.ipynb
🟡Code & training data: https://github.com/nomic-ai/contrastors/

Читать полностью…

Анализ данных (Data analysis)

📚 AICI — новый уровень контроля над генерацией текста в LLM. Это не просто очередная библиотека, а принципиально новый подход к интеграции пользовательской логики в процесс генерации текста.

Суть в том, что разработчики с помощью данного инструмента дают возможно встраивать собственные алгоритмы прямо в процесс декодирования токенов. Например, можно динамически редактировать промпты, ограничивать вывод по грамматике или координировать несколько параллельных генераций. Всё это работает через компактные Wasm-модули, выполняющиеся на CPU параллельно с GPU-вычислениями модели.

🤖 GitHub

@data_analysis_ml

Читать полностью…

Анализ данных (Data analysis)

🥇 VL-Rethinker — новую парадигму мультимодального вывода, обучаемую напрямую с помощью Reinforcement Learning.

🌟 Новая SOTA на ключевых бенчмарках по vision + math:

🟢 MathVista: 80.3 → 🥇 (+6.4 vs GPT-o1 73.9)
🟢 MathVerse: 61.7 → 🥇 (+4.7 vs GPT-o1 57.0)
🟢 MathVision: 43.9 → 🥇 (+1.7 vs GPT-o1 42.2)

🔥 В чём секрет? GRPO-алгоритм с двумя ключевыми новшествами:

🟠Этап 1: Улучшение логики, с помощью GRPO + SSR (Selective Sample Replay):

Сохраняются только те последовательности действий модели (rollouts), которые дали ненулевое преимущество (advantage).

При повторном обучении приоритет отдается полезным примерам, что помогает стабилизировать обучение.

Почему это важно?
При обычном GRPO-со временем "advantage" может становиться нулевым → градиенты обнуляются → модель перестаёт учиться. SSR решает эту проблему.

🟠 Этап 2: Вынужденное «переосмысление» (Forced Rethinking)
На этом этапе в каждый rollout добавляется специальный триггер, заставляющий модель заново обдумывать ответ, прежде чем его выдать.

Это развивает способность к саморефлексии, улучшает многошаговое рассуждение и точность ответов.

🔥 Модель вынуждена подумать ещё раз перед финальным ответом.
Результат — у модели появляются признаки метапознания: она сама находит ошибки в начальных размышлениях.

✔️ VL-Rethinker-72B — первый VLM, обгоняющий GPT-o1.

Похоже, что будущее за "медленно думающими" и умеющими рефлексировать агентами.

🔜 Paper
🔜 Code
🔜 Website

Читать полностью…

Анализ данных (Data analysis)

🖥 Open Ai выпустила еще 3 модели, подробности тут.

Как же плохо с неймингом у OpenAi.

GPT-4o
GPT-4o-mini
GPT-4.5
o1-low
o1-medium
o1-high
o1-mini
o1-pro
o3-low
o3-medium
o3-high
o3-mini-high
o3-pro
o4
o4-pro
o4-mini
o4-mini-high
chatgpt-4o-latest
GPT-4.1
GPT-4.1-mini
GPT-4.1-nano

Все понятно ?)

@data_analysis_ml

Читать полностью…

Анализ данных (Data analysis)

🔥На прошлой неделе СЕО провайдера Cloud․ru Евгений Колбин анонсировал внедрение бесплатного AI-помощника в облачной платформе Cloud․ru Evolution на ежегодной конференции GoCloud

А еще — сразу несколько новых сервисов для Big Data и AI!

- Evolution Managed ArenadataDB, доступный из облака Cloud․ru. Архитектура MPP помогает быстрее и эффективнее обрабатывать данные, в том числе в критически важных системах. Из преимуществ: быстрая и эффективная обработка данных, анализ и прогнозирование клиентской базы, сбор финансовой и управленческой отчетности. Сервис подойдет крупному бизнесу, компаниям среднего сегмента из ритейла, банковского сектора, сферы производства.

- Набор новых платформенных сервисов для работы с big data в публичном облаке Cloud․ru Evolution, который станет доступен в мае этого года. С его помощью компании смогут обрабатывать и анализировать данные, экономить время и ресурсы на обслуживание нужной IT-инфраструктуры и сфокусироваться на росте бизнеса. Готовые инструменты подойдут для AI/ML-задач, легко разворачиваются без помощи специалиста с опытом работы с большими данными.

- Cloud․ru Evolution AI Factory для быстрой разработки и внедрения AI-агентов в облаке. Собранный в одном месте набор готовых AI/ML-инструментов и технологий предоставит несколько новых возможностей: от обучения моделей до запуска мультиагентных систем. Запуск запланирован на лето 2025.

- Cloud․ru Evolution Stack AI-bundle. Это первое в России гибридное облако с поддержкой искусственного интеллекта, которое поможет быстрее запускать и масштабировать AI-сервисы в контуре компании.

Читать полностью…

Анализ данных (Data analysis)

🚀 DeepSeek открывает код своего inference-движка , но делает это с умом

Во время Open Source Week команда уже поделилась несколькими библиотеками — и получила мощный фидбек: коллаборации, обсуждения, багфиксы. Сегодня они идут дальше и отдают в open-source ядро своей inference-системы.

🧠 Inference engine DeepSeek построен поверх vLLM
💡 Раньше был внутренним, глубоко кастомизирован под DeepSeek-V3 / R1

⚠️ Но:
– Был основан на старом форке vLLM
– Жёстко зависел от приватной инфраструктуры DeepSeek
– И не имел ресурса на поддержку в

Вместо того чтобы выкладывать «сырой монолит», команда решила постепенно влить лучшие фичи в уже существующие open-source проекты:

✅ Делают фичи модульными
✅ выкладывают оптимизации
✅ Работа ведётся в синхроне с PyTorch и vLLM

https://github.com/deepseek-ai/open-infra-index/blob/main/OpenSourcing_DeepSeek_Inference_Engine/README.md

Читать полностью…

Анализ данных (Data analysis)

🚀 Нативная поддержка Python в CUDA от NVIDIA!

Теперь можно писать CUDA-код напрямую на Python — без C++ и сторонних обёрток.

Новый API от NVIDIA позволяет взять полный контроль над GPU из Python
▪ Поддержка cuNumeric, RAPIDS, Modulus, и др.
▪ Основано на CPython API — без прослоек

🎯 Что это меняет:
- Снижает барьер входа в GPU-разработку
- Упрощает создание ML и Data Science-проектов
- Открывает возможности для оптимизации

🧠 Python на GPU теперь без компромиссов!

🔗 Подробнее

Читать полностью…

Анализ данных (Data analysis)

✔️ reTermAI — ИИ-помощник в терминале

reTermAI — это умный ассистент для zsh и bash, который подсказывает команды прямо в терминале на основе вашей истории.
Полезно, если часто забываешь синтаксис или хочешь ускорить работу с CLI.

🚀 Что умеет:
▪ ИИ-рекомендации команд по истории
▪ Поддержка частичного ввода
▪ Выбор LLM (можно подключить свой)
▪ Гибкая адаптация под рабочий процесс
▪ Совместим с zsh и bash

📦 Установил — и терминал стал умнее.

Отличный инструмент для девелоперов, админов и всех, кто живёт в консоли.

pip install reterm-ai

🔗 Github

#terminal #cli #bash #zsh #LLM #opensource #reTermAI #ai

@data_analysis_ml

Читать полностью…

Анализ данных (Data analysis)

🤖 Google запускает A2A — новый протокол общения между ИИ-агентами

Google представил Agent2Agent (A2A) — открытый стандарт для обмена задачами между ИИ-агентами в разных сервисах и компаниях.
Это что-то вроде MCP, но с упором на безопасность, мультимодальность и совместимость с корпоративной инфраструктурой.

🔑 Главное:
▪ A2A — task-first: агенты обмениваются не сообщениями, а задачами с жизненным циклом (create, update, cancel, complete).
▪ Автоопределение возможностей: каждый агент публикует JSON-«визитку» с описанием своих способностей (capability discovery).
▪ HTTP, SSE, JSON-RPC — всё работает на веб-стеке, легко встраивается в существующие API.
▪ Поддержка текста, аудио и видео — мультимодальность встроена по умолчанию.
▪ Security-first: в отличие от ранних протоколов (как MCP), здесь продумана авторизация и защита данных.

В теории — это мощный инструмент для автоматизации бизнес-процессов.

На практике — уже критикуют за перегруз и неясные перспективы. Но с ресурсами Google — у проекта есть шанс стать отраслевым стандартом.

📌 Отличие между MCP и A2A:
🧠 MCP (Multi-Agent Communication Protocol) — это:
➡️ Протокол от OpenAI, придуманный, чтобы LLM-агенты могли "болтать" друг с другом.
💬 Основан на сообщениях — один агент пишет другому что-то вроде чата, и тот отвечает.
⚙️ Подходит для простых сценариев: «Скажи это», «Спроси у другого», «Придумай план».

Но:
– Без жёсткой структуры
– Нет встроенной безопасности
– Не поддерживает длинные сложные процессы (например, запланировать и потом отчитаться)
– Не заточен под задачи типа "запусти и следи"

🧠 A2A (Agent2Agent) — это:
➡️ Google-версия MCP, но с упором на бизнес и инфраструктуру.
📦 Вместо чатов — структурированные задачи, у которых есть статусы: created, accepted, completed, failed, cancelled.
📛 Поддерживает авторизацию, описание возможностей агента, обратную связь, долгие процессы, аудио и видео.

Проще говоря:
– MCP — это «чат между ИИ»
– A2A — это «Jira для агентов» — задачи, статусы, ролевая модель, безопасность.

google.github.io/A2A

#Google #A2A #agents #AI #protocols #interop #infrastructure

Читать полностью…

Анализ данных (Data analysis)

🌟 LMDeploy — высокооптимизированный инструментарий для работы с большими языковыми моделями.

Разработанный командами MMRazor и MMDeploy, LMDeploy проект предлагает комплексный подход к сжатию, развертыванию и обслуживанию LLM.

Благодаря персистентному батчингу, оптимизированным CUDA-ядрам и квантованию KV Cache, сервис демонстрирует до 1.8x более высокую пропускную способность по сравнению с vLLM.

Поддерживаются десятки моделей, включая Llama 3, Qwen, InternLM и Mixtral, а также мультимодальные решения (LLaVA, CogVLM).

🤖 GitHub

@bigdatai

Читать полностью…

Анализ данных (Data analysis)

🔭 Katib — облачное AutoML-решение для Kubernetes. Этот инструмент позволяет автоматизировать подбор гиперпараметров, раннюю остановку обучения и даже поиск нейросетевых архитектур, работая с любыми ML-фреймворками от TensorFlow и PyTorch до XGBoost.

Особенность проекта — интеграция с экосистемой Kubeflow и поддержка различных механизмов оркестрации, включая Argo Workflows и Tekton Pipelines. Проект активно развивается сообществом и уже используется в продакшн-средах.

🤖 GitHub

@data_analysis_ml

Читать полностью…

Анализ данных (Data analysis)

🚀 OmniSVG: Унифицированная модель для генерации сложных векторных графиков​

OmniSVG — новая модель, использующая предварительно обученные модели Vision-Language Models (VLMs) для энд-ту-энд генерации сложных и детализированных векторных изображений в формате SVG. ​

Ключевые особенности OmniSVG:

- Мультимодальность: Способность генерировать SVG на основе текстовых описаний, изображений или их комбинации.​

- Эффективность: Преобразование команд и координат SVG в дискретные токены позволяет отделить структурную логику от геометрии, что обеспечивает более эффективное обучение.​

- Гибкость: Генерация изображений различной сложности — от простых иконок до детализированных аниме-персонажей.​

Вместе с моделью представлен MMSVG-2M — мультимодальный датасет, содержащий 2 миллиона богато аннотированных SVG-объектов, предназначенный для обучения и оценки моделей генерации векторной графики. ​

🟡Проект: omnisvg.github.io
🟡Репозиторий: github.com/OmniSVG/OmniSVG
🟡Датасет: huggingface.co/OmniSVG

@data_analysis_ml

Читать полностью…

Анализ данных (Data analysis)

🎥 ReCamMaster — это передовая система генеративного рендеринга видео, разработанная центром визуальной генерации и взаимодействия компании Kuaishou (KwaiVGI). Она позволяет изменять траектории камеры в существующих видеороликах, создавая новые ракурсы сцены без необходимости повторной съемки. ​

Основные особенности ReCamMaster:

Изменение траектории камеры: Система позволяет перегенерировать видео с новыми движениями камеры, сохраняя исходное содержание и динамику сцены.​

Использование предварительно обученных моделей: ReCamMaster использует возможности предварительно обученных текст-видео диффузионных моделей, что обеспечивает высокое качество генерируемых видео.​

Создание обучающего набора данных:
Для обучения модели был создан крупномасштабный синхронизированный видеодатасет с использованием Unreal Engine 5, включающий разнообразные сцены и движения камеры. ​

Применения ReCamMaster:
- Стабилизация видео: Система может сглаживать дрожание камеры в видеороликах, создавая более плавные и стабильные кадры.​

- Суперразрешение и расширение сцены: ReCamMaster способна повышать разрешение видео и расширять границы сцены за пределы исходного кадра.​

- Дополнение данных для ИИ: Система может генерировать видео с различными ракурсами, что полезно для обучения моделей искусственного интеллекта, особенно в области робототехники и автономного вождения. ​

🟡Github: https://github.com/KwaiVGI/ReCamMaster
🟡Paper: https://arxiv.org/abs/2503.11647
🟡Project: https://jianhongbai.github.io/ReCamMaster/

Читать полностью…

Анализ данных (Data analysis)

📦 Skops — проект, предлагающий альтернативу стандартному pickle для работы с моделями scikit-learn.

Skops позволяет безопасно сохранять и загружать ML-модели, избегая рисков, связанных с выполнением произвольного кода.

Особый интерес представляет встроенный функционал для создания model cards — документов, объясняющих назначение и особенности моделей.

🤖 GitHub

Читать полностью…

Анализ данных (Data analysis)

Только посмотрите, кто у нас тут на подходе! 🐐

https://github.com/ggml-org/llama.cpp/pull/12828

@data_analysis_ml

Читать полностью…

Анализ данных (Data analysis)

Хотите разбираться в Big Data так, как это делают специалисты Яндекса? Тогда присоединяйтесь к бесплатному интенсиву ШАДа Big DWH Week!

Вас ждёт 8 онлайн-занятий, на которых вы познакомитесь с YTsaurus — платформой для распределённого хранения и обработки данных. Вы разберётесь в её архитектуре и масштабировании, а также научитесь настраивать систему под свои задачи.

Интенсив открытый, поэтому зарегистрироваться может каждый. Однако интереснее всего программа будет тем, кто уже работает с данными: опытным бэкенд-разработчикам и разработчикам баз данных, инженерам и аналитикам данных, а также студентам технических направлений.

Регистрируйтесь до 25 апреля и прокачивайтесь в Big Data вместе с экспертами Яндекса и ШАДа! Все подробности — по ссылке.

Читать полностью…
Подписаться на канал