begtin | Бизнес и стартапы

Telegram-канал begtin - Ivan Begtin

7029

I write about Open Data, Procurement, e-Government, Open Government, Budgets, Privacy and other govtech stuff Chat https://telegram.me/begtinchat Facebook - https://facebook.com/ibegtin Secure contacts ivan@begtin.tech

Подписаться на канал

Ivan Begtin

Подборка полезных ссылок по данным, технологиям и не только:
- Sparrow [1] движок для извлечения данных из документов и изображений, использует LLM, открытый код под GPL
- Genealogy of Relational Database Management Systems [2] хорошо нарисованная история создания баз данных, полезно для преподавания этой дисциплины. Минус только в том что она 2018 года и последние разработки не охватывает, плюс в том что большая часть фундаментальных трендов охвачена c 70х годов.
- Hamilton [3] ещё один движок с открытым кодом для преобразования данных. Выглядит неплохо, распространяется под BSD лицензией.
- Meaningful metrics: How data sharpened the focus of product teams [4] о том как устроены метрики в Duolingo. Полезное про то как устроены метрики в массовых технологических продуктах, а заодно является ответом на вопросы о том почему Duolingo устроено именно так как оно устроено.
- Bigtable transforms the developer experience with SQL support [5] анонс поддержки SQL в Bigtable. Кажется "а что тут такого?", а как сильно помогает в пользовательском опыте работы с данными там.

Ссылки:
[1] https://github.com/katanaml/sparrow
[2] https://hpi.de/fileadmin/user_upload/fachgebiete/naumann/projekte/RDBMSGenealogy/RDBMS_Genealogy_V6.pdf
[3] https://github.com/dagworks-inc/hamilton
[4] https://blog.duolingo.com/growth-model-duolingo/
[5] https://cloud.google.com/blog/products/databases/announcing-sql-support-for-bigtable

#opensource #dataengineering #dataproducts #metrics #readings

Читать полностью…

Ivan Begtin

В рубрике интересных продуктов для публикации данных малоизвестный pycsw [1] движок с открытым кодом для публикации метаданных для геоданных. Поддерживает стандарты STAC API, CSW, OpenAPI, OGC Collections, OpenSearch, OAI-PMH и даже SRU, который, скорее, для библиотечных систем.

Имеет немного внедрений, около 50 по всему миру [2] во всяком случае тех что известны самим разработчикам.

Сильно менялся от версии к версии. До версии 3.0 был просто движком для публикации CSW каталогов, а с версии 3.0 чем-то стал конкурировать с геосервером или дополнять, тут уж как посмотреть.

С точки зрения архитектуры штука не то чтобы сильно современная, но открытый код, но расширяется плагинами и, в целом, функции индексации геоданных может выполнять неплохо если прикрутить к нему интерфейс, API для управления и тд.

Ссылки:
[1] https://pycsw.org
[2] https://raw.githubusercontent.com/geopython/pycsw.org/gh-pages/live-deployments.geojson

#opendata #geodata #datacatalogs #opensource

Читать полностью…

Ivan Begtin

В Haaretz статья о том что [1] Иранские хакеры начали повсеместно публиковать чувствительные израильские документы, а власти Израиля начали давить на все социальные сети и хостинг провайдеры всеми легальными способами чтобы те немедленно удаляли этот и любой про-хамасовский контент.

И, картина была бы неполной, не упоминайся там Телеграм команда которого крайне недружелюбна к требованиям властей и спецслужб, как минимум израильский и не совпади это с арестом Павла Дурова в Париже.

Честно говоря не знаю даже что добавить, но не верю что Павла вот так просто освободят.

Ссылки:
[1] https://archive.is/J9nke

#israel #iran #security #telegram

Читать полностью…

Ivan Begtin

Если ты знаешь один трюк, рассказывать его нельзя. Если ты знаешь сто трюков, то можно рассказать хоть про три (с)

Недокументированные API - это те API веб сайтов которые существуют и дают доступ к данным/сервисами, но по какой-либо причине явно не документированы владельцем сайта. Это то о чём я раньше читал лекции и недавно упоминал их в контексте презентации Paul Bradshow для дата-журналистов [1]. Журналисты расследователи и дата журналисты используют их достаточно часто. Я лично регулярно сталкиваюсь с этим в задачах архивации сайтов, создания датасетов "из ничего" и в Dateno при индексировании каталогов данных.

Есть несколько трюков в их поиске которые, как оказывается, широкой публике малоизвестны:
1. Многие сайты разрабатываются так что возвращают разный контент на передаваемые заголовки "Accept". Достаточно делать запросы с заголовком "Accept: application/json" чтобы обнаружить что веб страница может быть и JSON документом. Например, сайты на базе движка Blacklight используемого в архивном деле и для ведения цифровых коллекций материалов.
2. У стандартизированных CMS множество стандартизированных интерфейсов о которых владельцы сайтов могут ничего не подозревать. Не совсем "недокументированное API", скорее плохо документированное API по умолчанию. Оно есть пока владелец сайта явным образом не найдёт где его отключить или не предпримет специальных мер по его сокрытию. Явный пример, /wp-json/ у Wordpress, а также множество других примеров в менее известных CMS. На многих порталах открытых данных каталог данных доступен по ссылке /data.json даже если на сайте ссылки на него нет.
3. Разработчики API тоже люди и думают шаблонами и даже на проде оставляют доступ к API через стандартизированные интерфейсы во внутренних ссылках или поддоменах вроде префиксов документов вроде api и api-dev и в виде внутренних ссылок /api, /api-dev, /rest и ещё с десяток других.

Когда надо найти API конкретного сайта то трюков гораздо больше. Главное чтобы такое API реально существовало😉

Ссылки:
[1] /channel/begtin/5662

#opendata #data #tricks #readings

Читать полностью…

Ivan Begtin

Смотрю презентации выступлений участников DuckCon 5 [1]. Там довольно много насыщенных докладов интересных, как с точки зрения технических особенностей применения DuckDB, так и с продуктовой точки зрения, когда применение в нужном месте даёт качественное повышение эффективности продукта.

Из того что особенно привлекло внимание так это выступление Miguel Filipe из Dune Analytics про то как они применяют DuckDB для предоставления результатов аналитикам из мира крипты [2] и Edward Ruiz из Boston University о том как он разработал на базе duckdb движок dbverse для языка R [3] который даёт существенный прирост скорости в обработке геномных и других научных данных.

В целом просмотренное подтверждает мои мысли что DuckDB хороший внутренний движок и фундаментальная технология для многих потенциальных продуктов.

Ссылки:
[1] https://duckdb.org/2024/08/15/duckcon5.html
[2] https://blobs.duckdb.org/events/duckcon5/miguel-filipe-delighting-users-with-restful-apis-and-duckdb.pdf
[3] https://blobs.duckdb.org/events/duckcon5/ed-ruiz-composable-database-libraries-for-larger-than-memory-scientific-analytics.pdf

#datatools #duckdb #dataengineering

Читать полностью…

Ivan Begtin

В рубрике больших каталогов открытых данных проект DR Power (egriddata.org) [1] с наборами данных моделей для моделирования системы электроэнергетики США. Содержит 272 тысячи наборов данных, фактически модель по каждому объекту, и почти 800 тысяч файлов, в основном, в специализированных для проектирования электроэнергетики форматах.

Все данные опубликованы на портале на базе ПО DKAN, у которого есть открытое API, но которое явно не справляется с такой нагрузкой.

Ссылки:
[1] https://egriddata.org

#opendata #datasets #energy #usa

Читать полностью…

Ivan Begtin

Для тех кто любит заниматься дата сторителлингом (журналисты, аналитики) новый полезный инструмент Closeread [1] позволяющий рассказывать истории внутри HTML документов open source системы документирования Quarto [2].

Quarto сама по себе удобная система и я лично давно смотрю на неё с разных сторон и хочу применить в деле. А Closeread ещё и приближает её к задачам рассказывания историй.

И всё это в Markdown, расширяемо, и тд.

А ещё интересно для публикации научных статей, уже есть примеры их подготовки в Quarto и множество шаблонов [3].

Куда ни посмотри, отличный инструмент.

Ссылки:
[1] https://closeread.netlify.app
[2] https://quarto.org
[3] https://github.com/quarto-journals

#opensource #datajournalism #analytics #datadocs #tools

Читать полностью…

Ivan Begtin

В рубрике закрытых данных в РФ у геопортала Архангельской области на базе ArcGIS закончилась лицензия [1] и слои данных и сервисы с этого сервера более недоступны. Хотя они всё ещё перечислены в их каталоге геоданных [2]. Похоже что геопортал уже, или перевели, или переводят на российскую ГИС Orbis, у которой открытых слоёв с данными нет и в каталоге они не перечислены, но есть недокументированные API. Не совместимые с ArcGIS или с протоколами OGC.

А каталог геоданных в Архангельской области не обновляли уже 3 года.

Ссылки:
[1] http://maps1.dvinaland.ru/arcgis/rest/services/AdressnPlan/Kadastr/FeatureServer/0
[2] https://maps29.ru/catalog/#
[2] https://maps29.ru

#opendata #closeddata #datasets #russia #geodata

Читать полностью…

Ivan Begtin

В продолжение размышлений о поиске геоданных и связанных с этим сложностей. Я ранее писал про GeoSeer, единственный известный мне поисковик геоданных в мире, но и он сравнительно небольшой. А вот в качестве альтернатив ему выступают уже не поисковики, а каталоги георесурсов. В первую очередь поисковики в экосистеме ArcGIS по их каталогам открытых данных и георесурсов и некоторое, небольшое число альтернатив.

Например, Spatineo Directory [1] от финских геоконсалтеров Spatineo. Там более 87 тысяч георесурсов, в виде точек API по стандартам WFS, WMS, WMTS, но без сбора информации о слоях, поэтому это не поисковик, а именно каталог. Его существенный минус в то что более менее там систематизированы только точки API из развитых стран.

Другой, неожиданно, государственный проект это FGDS Status Checker [2] гигантский каталог геовебсервисов созданный как сервис проверки их доступности. Список вебсервисов там огромный, но почти полностью ориентированный на США и почти не охватывающий морские территории. Есть подозрение что Spatineo делали свой каталог с оглядкой именно на этот продукт, поскольку функции схожи.

Но ещё больше каталогов которые прекратили своё существование. К примеру WFS Geodata Catalog от германского GeoClub. Сейчас можно найти только скриншот.

Ещё был Pyxis crawler с каталогом из 29+ тысяч датасетов, вот он ближе к GeoSeer, но индексировал всего 1572 источника и его тоже больше нет. Тоже остался тоже скриншот.

И был ещё такой поисковик Geometa, но теперь даже его скриншот найти оказалось непросто.

Фактических попыток систематизировать и сделать доступными геоданные и геосервисы было много. Можно сказать что у Dateno тоже есть подзадача в части геоданных.

В каталоге Dateno сейчас 4.4 миллиона наборов геоданных извлеченных из 3127 геопорталов. При этом в реестре Dateno всего 5955 геопорталов и после индексации оставшихся объём геоданных существенно вырастет, кроме того много геоданных в других типах дата каталогов: порталах открытых данных, научных репозиториях и тд., это тоже добавит число геоданных.

Но пока приходится держать в голове что в части геоданных относительно сравнимой референсной базой является GeoSeer.

Ссылки:
[1] https://directory.spatineo.com
[2] https://statuschecker.fgdc.gov

#opendata #geodata #datasets #datacatalogs #dateno

Читать полностью…

Ivan Begtin

Свежая научная статья Why TPC Is Not Enough: An Analysis of the Amazon Redshift Fleet [1] изнутри Amazon AWS с анализом около 32 миллионов таблиц и около 500 миллионов запросов за 3-х месячный период, а также открытый датасет который лежит в основе этой статьи и её выводов.

Для дата инженерии там немало инсайтов:
1. До сих пор использование parquet это редкость, большая часть клиентов AWS используют сжатые GZip'ом CSV и JSON файлы.
2. Самый популярный тип данных varchar, более 52%. Это ещё раз подтверждает что на AWS явно основное применение не для математических расчётов, анализа геномных данных и тд.
3. Реально больших данных мало, больше 99.8% запросов работают менее чем с 10TB.

По поводу последнего в блоге MotherDuck, пост со ссылкой на эту статью [3] как раз про то что "больших данных не существует" и то что статья про данные AWS это подтверждает. Реальная потребность в обработке очень больших данных невелика.

Ссылки:
[1] https://assets.amazon.science/24/3b/04b31ef64c83acf98fe3fdca9107/why-tpc-is-not-enough-an-analysis-of-the-amazon-redshift-fleet.pdf
[2] https://github.com/amazon-science/redset?tab=readme-ov-file
[3] https://motherduck.com/blog/redshift-files-hunt-for-big-data/

#datasets #data #datatools #dataresearch

Читать полностью…

Ivan Begtin

В рубрике как это устроено у них специализированные OpenDAP Hyrax порталы для публикации океанографических и климатических данных. Развивается одноимённой НКО [1], изначально создано в научных центрах NOAA и поддерживается 3-мя агентствами в США: NOAA, NSF и NASA, а также Австралийским метеорологическим бюро.

Поддерживает множество стандартов публикации данных таких как HDF4, HDF5, NetCDF3, NetCDF4, FITS, NcML, THREDDS и другие.

Применяется, как минимум, в паре десятков проектов связанных с данными об океанах и климате по всему миру. Например:
- http://servdap.legi.grenoble-inp.fr/opendap/hyrax/
- https://ladsweb.modaps.eosdis.nasa.gov/opendap/hyrax/
- https://ppdb.us.edu.pl/opendap/

Как правило, раскрываемые в этих серверах данные большого объёма, по несколько терабайт на каждой инсталляции и содержат преимущественно численные значения.

Другие продукты в этой области это ERDDAP [2] и THREDDS Data Server (TDS) [3], также имеют только это узкое применение.

В принципе особенность развития работы с данными в климатологии и наук о Земле в наличие большого числа каталогов данных, открытых данных, но по собственным стандартам, в специализированном ПО, не пересекающимися, ни с наиболее популярными инструментами в data science, ни с открытыми данными.

Ссылки:
[1] https://www.opendap.org
[2] https://www.ncei.noaa.gov/erddap/index.html
[3] https://www.unidata.ucar.edu/software/tds/

#opendata #climate #meteorology #datacatalogs #thredds #opendap

Читать полностью…

Ivan Begtin

Полезные ссылки про данные, технологии и не только:
- FOR-species20K dataset [1] датасет результатов лазерного сканирования более 20 тысяч деревьев и идентификация их видов на основе этих данных
- DuckDB Tricks – Part 1 [2] полезные трюки по работе с данными с помощью DuckDB.
- ncWMS Guide [3] руководство по серверу WMS ncWMS, активно используется вместе с серверами Thredds в метеорологии. Начал их активно добавлять в реестр каталогов данных, скоро проиндексируются в Dateno
- Mapbender 4.0 [4] вышла 4-я версия Mapbender, популярного open source геопортала используемого в ЕС во многих странах.
- SuperMap [5] популярный в Китае геосервер, альтернатива ArcGIS. Используется во многих китайских госорганах, компаниях и активно распространяется в южной, восточной и юго-восточной азии. Имеет частичную совместимость с ArcGIS
- Mealie [6] сервер для ведения рецептов, открытый код и импорт из разных источников. Локализован на многие языки включая русский.
- Slackdump [7] архиватор публичных и личных сообщений из Slack'а. Не требует админских привилегий, открытый код.

Ссылки:
[1] https://zenodo.org/records/13255198
[2] https://duckdb.org/2024/08/19/duckdb-tricks-part-1
[3] https://reading-escience-centre.gitbooks.io/ncwms-user-guide/content/
[4] https://mapbender.org/aktuelles/details/mapbender-version-400-released/
[5] https://www.supermap.com/en-us/
[6] https://github.com/mealie-recipes/mealie
[7] https://github.com/rusq/slackdump

#opensource #data #datatools #geodata #geoportals #tools #datasets

Читать полностью…

Ivan Begtin

В рубрике как это устроено у них открытые и общедоступные данные тихоокеанских островных государств.
Большая часть тихоокеанских государств входят в сообщество Pacific Community которое ведёт несколько проектов по сбору данных. Один из них - это геопорталы на базе ПО PopGIS которые были созданы для 14 стран [1] и которые совмещают раскрытие статистики и геопорталы [2].

Другой пример, это Pacific Environment Data Portal [3] созданный в Secretariat of the Pacific Regional Environment Programme (SPREP) и содержащий 19 тысяч наборов данных об окружающей среде и включающий подпорталы по каждой стране [4].

А также, конечно стоит упомянуть Pacific Data Hub [5] портал открытых данных всё того же Pacific Community и PHD.Explorer [6] одно окно доступа к статистики всех государств Тихого океана входящих в Pacific Community.

Это не весь список, есть и инициативы в отдельных странах и есть другие порталы в Pacific Community, но при поиске данных по этим странам стоит начинать именно с этих порталов.

Ссылки:
[1] https://sdd.spc.int/mapping-popgis
[2] https://fiji.popgis.spc.int
[3] https://pacific-data.sprep.org
[4] https://tonga-data.sprep.org
[5] https://pacificdata.org

#opendata #oceania #polynesia #data #datasets #datacatalogs

Читать полностью…

Ivan Begtin

В рубрике как это работает у них открытые данные по доменам в зоне .fr (Франция) на сайте Afnic [1] В том числе руководство [2] (на французском языке).

В общей сложности это данные по 8.7 миллионам доменов, объёмом около 600МБ в формате CSV.

Afnic не является государственной структурой и они не имеют обязательств публиковать данные, но делают это поскольку разделяют ценности открытости.

Ссылки:
[1] https://www.afnic.fr/produits-services/services-associes/donnees-partagees/
[2] https://www.afnic.fr/wp-media/uploads/2021/03/Open-Data-fr-afnic-Guide-Utilisateurs.pdf

#opendata #france #domains

Читать полностью…

Ivan Begtin

К вопросу о состоянии открытости данных в РФ, я не очень верю что в ближайшие месяцы (годы?) случится чудо и оживёт государственный портал data.gov.ru. Пока не проглядывается сценарий при котором внутри гос-ва тренд на систематическую открытость вернулся. Больше шансов что мы в Dateno соберём больше данных чем когда-то было в data.gov.ru. Там уже сейчас проиндексировано много разного и можно больше.

Но есть посмотреть профиль РФ в Dateno, то там проиндексировано только около 15 каталогов данных из 154. Почему так? Можно ли лучше?

Конечно можно, и ограничения тут очень понятные:
1. Большая часть российских госресурсов сейчас не индексируются с зарубежных датацентров. Это преодолевается развертыванием прокси в РФ и индексация через прокси. И РФ не единственная страна где есть такие ограничения.
2. Значительная часть открытых данных в России публикуется по метод рекомендациям Минэка. Они очень плохо написаны, индексировать сайты публикующие данные по ним сложно, но возможно. Только этот парсер будет только под российские госпорталы, и то не все. И, по большей части, с устаревшими данными.
3. Очень много в РФ своих геопродуктов, самописных порталов данных и тд. Это также требует написания множества парсеров. Штук 40-50. Более менее стандартизированы только порталы NextGIS, Bitrix и Орбис, но их не так много.
4. Часть порталов с данными используют известное ПО типа Ipt, Pure, Figshare и до них пока ещё не дошли руки, но как только дойдут они добавятся в общий индекс.

В итоге, если специально не заморачиваться российской спецификой получится проиндексировать ещё 20-40 каталогов данных через прокси и за счёт парсеров для универсального софта, а в остальном надо приложить существенные усилия чтобы проиндексировать оставшиеся.

В этом смысле, собрать данные, например, по Финляндии гораздо проще. Там уже большая часть каталогов данных проиндексирована, да и не проиндексированные работают на типовом ПО которое тоже скоро будет индексироваться.

Вся эта национальная специфика очень сильно снижает видимость и находимость данных. И в Dateno ещё можно более-менее, но измерить эту доступность, а, к примеру, в Google Dataset Search невозможно даже посмотреть сколько датасетов и источников есть по странам.

#opendata #dateno #datasets #datacatalogs

Читать полностью…

Ivan Begtin

В рубрике интересных малоизвестных проектов по публикации данных WMO Information System (WIS) 2.0 [1] проект Всемирной метеорологической организации по стандартизированному и систематизированному сбору данных о местной погоде от национальных метеорологических агентств. WIS 2.0 представляет собой набор стандартов по предоставлению данных и для упрощения работы по стандартам WMO предоставляет открытое и бесплатное ПО WIS 2 in a box [2] в которое поступает данные со станций метеонаблюдения и данные предоставляются в виде OGC API (стандарт геоданных) через встроенный внутрь движок pygeoapi [3].

Все публикуемые в WIS 2.0 in a box стандартизированы, там всего несколько коллекций: метаданные, станции, уведомления о данных и ежечасные синоптические наблюдения.

Большая часть инсталляций WIS 2.0 in a box общедоступны, но и не очевидно может быть где найти, но и это не так сложно, если захотеть.

Вот примеры серверов с WIS 2 in a box:
- США https://wis2node.nws.noaa.gov
- Белиз https://wis.nms.gov.bz
- Казахстан https://wis2box.kazhydromet.kz
- Россия http://wis2box.mecom.ru
- Китай https://wis2node.wis.cma.cn/

И так далее, таких инсталляций довольно много, что делает pygeoapi одним из довольно популярных движков для публикации геоданных.

P.S. Мне так и не удалось найти инсталляции WIS 2.0 in a box в Армении, возможно его там и нет, а данные передаются каким-то другим образом. Как я помню, синоптические данные в странах СНГ собирались через Росгидромет.

Ссылки:
[1] https://community.wmo.int/en/activity-areas/wis
[2] https://docs.wis2box.wis.wmo.int/en/1.0b7/index.html
[3] https://pygeoapi.io/

#opendata #datacatalogs #geodata #datasets #synoptic #weather

Читать полностью…

Ivan Begtin

В качестве мини-хобби, очень мини, я время от времени систематизирую ссылки по темам в жанре awesome list на Github с некоторой надеждой что над этими списками не я один буду работать. Надежды, как правило, не оправдываются, за редким исключением.

Список Awesome Digital Preservation, за время существования всего 14 лайков. У цифровой архивации мало фанатов, увы.

Или, например, у меня есть список Awesome Open Data software с ПО и стандартами по работе с открытыми данными. Почти всё ПО из реестра каталогов данных в Dateno, плюс ссылки на форматы файлов и стандарты обмена данными. Звездочек маловато, всего 24, не самая популярная тема.😜

Или вот Awesome Data Takeout со ссылками на сервисы получения всех своих данных из онлайн сервисов. 54 звезды, тоже, очень мало.

Для дата журналистов Awesome data journalism со списками инструментов для визуализации и не только. Набрало, 178 звезд, давно не обновлялось.

Russian Awesome Open data каталог источников открытых данных по РФ. Составлялся очень давно, как-то собрал 200 звездочек, уже практически не пополняется. Вместо него развивали datacatalogs.ru

Побольше в Awesome Forensic Tools с подборкой ресурсов в задачах цифрового дознания. Набрало 472 лайка при том что я почти не прилагал усилий по его пополнению, только один раз собрал всё вместе.

И, наконец, Awesome Status Pages собравшее 2738 лайков. Активное настолько что утомляет, сплошным потоком разработчики создают очередные сервисы проверки и публикации статусов сервисов и используют всякую маркетинговую мишуру чтобы их продвинуть. Дважды предлагали выкупить у меня эту страницу. Чувствую зря я её не продал;)

В общем-то по настоящему выстрелило только последнее, хотя списки составлять я лично люблю. Списки это же частный вид таблицы, можно ещё жанр завести. Awesome table of <something>, но в форматы Github'а или Telegram'а они плохо укладываются. Но может найдется близкий интересный формат

#opendata #datajournalism #data #digitalforensics #readings #thoughts

Читать полностью…

Ivan Begtin

На днях я накатывал очередной обновление реестра каталогов данных, Dateno registry [1] тот самый который раньше был Common Data Index, а потом стал ядром поисковика по данным.

Важно то что он сам по себе также является продуктом, открытым, бесплатным, под свободной лицензией как база источников открытых и общедоступных данных. Самое очевидное применение его разработчиками национальных порталов открытых данных для агрегации на них данных с региональных, муниципальных и других порталов своей страны.

Некоторые цифры реестра видны на сайте, а некоторые можно подсчитать поработав в этим датасетом напрямую. Такие цифры на сегодня.

По типам каталогов данных
- 10 099 каталогов данных всего, из них:
— 5944 каталога геоданных
— 2732 портала открытых данных
— 871 репозиторий научных данных
— 276 каталогов индикаторов
— 276 всех остальных каталогов данных

По точкам подключения к API
- 35 404 точек подключения к API 99 различных типов API

По внешним идентификаторам:
- 777 идентификаторов каталогов данных в других источниках таких как re3data, datacatalogs.org, roar, wikidata и других

По используемому ПО:
- 119 типов ПО каталогов зарегистрировано
- 89% каталогов внесены с идентификацией типа ПО и только 11 процентов как отдельная разработка

По предметным областям
- 2158 каталогов имеют тематическую привязку в виде хотя бы одной темы, это около 21% всех каталогов данных

Это самый крупный каталог источников данных на сегодняшний день, сравнимый только с re3data и fairsharing, но они используются только для научных баз данных.

А наибольшие ограничения у реестра сейчас в том что у 66% каталогов данных не указан тип владельца и у 15% не идентифицирована страна к которой каталог относится. Если страну ещё можно идентифицировать по доменной зоне, то тип владельца каталога определяется, пока, только вручную. А приоритет ручной проверки проставлен от числа наборов данных в каталоге. Если в поисковый индекс Dateno попадает источник где есть более 1000 наборов данных то он становится кандидатом для ручной проверки и обновления метаданных.

И это, напомню, цифры именно по реестру каталогов данных. Потому что по индексируемым датасетам статистика совсем другая.

Ссылки:
[1] https://dateno.io/registry

#opendata #data #datasets #datacatalogs

Читать полностью…

Ivan Begtin

Полезные ссылки про технологии, данные и не только:
- Top Programming Languages 2024 [1] от IEEE Spectrum, для интриги не назову языки лидеры. Но всё очевидно:)
- GCSE results 2024: The main trends in grades and entries [2] лонгрид про данные результатов британского экзамена GCSE от Education Datalab.
- New Washington Post AI tool sifts massive data sets [3] в Axios о том что у Washington Post новый ИИ инструмент для просеивания данных, через него уже прогнали базу видеороликов кандидатов в президенты [4].
- Using Perplexity to prepare to job interview [5] автор описывает инструкции и шаблон промпт по подготовке к интервью компании на основании описания вакансии. Эта идея имеет больше глубины чем кажется на первый взгляд. Применимо не только к подготовке к интервью, но и в принятии решения откликаться ли на вакансию.
- Benchmarking energy usage and performance of Polars and pandas [6] сравнение энергопотребления при использовании Polars и Pandas. Интересен сам факт сравнения, но объекты сравнения подобраны плохо. Сравнивать надо с теми же движками что применялись в 1 billion rows challenge, а не вот так. Pandas уже какое-то время рассматривается как референсный продукт, хуже которого быть нельзя в части скорости работы с данными.
- No, 80% of data isn’t spatial (and why that is a good thing) [7] автор опровергает, вернее, пытается опровергнуть тот факт что 80% датасетов это геоданные. Нууу, вот тут то можно и поспорить. Количественно точно не 80%. А вот качественно, вернее объёмно по хранению... До того как объёмы геномных данных не начали накапливаться десятками петабайтов, а это где-то лет 5 назад началось, геоданные, с учётом данных наук о Земле, могли по объёму быть и более 80%. Сейчас я думаю что геномные данные составляют не менее 50%: данных.

Ссылки:
[1] https://spectrum.ieee.org/top-programming-languages-2024
[2] https://ffteducationdatalab.org.uk/2024/08/gcse-results-2024-the-main-trends-in-grades-and-entries/
[3] https://www.axios.com/2024/08/20/washington-post-ai-tool-data
[4] https://www.washingtonpost.com/elections/interactive/2024/republican-campaign-ads-immigration-border-security/
[5] https://www.linkedin.com/posts/patleomi_i-just-unlocked-a-really-cool-new-use-case-activity-7232456130281549825-onDm
[6] https://pola.rs/posts/benchmark-energy-performance/
[7] https://www.spatialstack.ai/blog/no-80-of-data-isn-t-spatial-and-why-that-is-a-good-thing

#data #ai #geodata #readings

Читать полностью…

Ivan Begtin

К вопросу об обработке данных с минимальным футпринтом (потреблением памяти оперативной и при хранении). Я добавил к библиотеке iterable пример по обработке дампов Википедии [1].

Для тех кто не сталкивался ранее, Фонд Викимедия обеспечивает открытость всех вариантов Википедии на сайте дампов [2] где они доступны в виде файлов SQL для загрузки в MySQL совместимые СУБД сжатых GZip и в виде дампов XML сжатых Bzip2. Если хочется поработать с этими данными локально, то надо или воссоздавать SQL базу данных из SQL файлов или работать с большими XML документами внутри которых страницы и другие объекты. Размер этих XML документов может быть весьма велик, до десятков гигабайт и обрабатывать их DOM парсерами весьма накладно.

Для некоторых задач Dateno мне нужны дампы Википедии, так чтобы к ним можно было строить запросы, но без желания воспроизводства инфраструктуры с MySQL и, в целом, хочется обрабатывать их оптимизировано.

Поэтому в примере выше использование библиотеки iterable для преобразования одной из маленьких Wiki (simplewiki) с дампом в 308MB в формате xml.bz2.

Идея в том чтобы:
1. Превратить его в формат для работы с помощью DuckDB
2. Сохранить минимально возможный объем для локального хранения, обработки и анализа.
3. Иметь возможность проделывать вме это на десктопе и с минимальным потреблением оперативной памяти.

В итоге пример можно посмотреть в репозитории. Два скрипта.
- convert.py преобразует xml.bz2 файл в jsonl.zst.
- enrich.py добавляет в полученный файл дополнительные метаданные по категориям вики страниц.

Почему jsonl и zst ? Потому что DuckDB умеет этот формат. После преобразования можно работать с ним напрямую без доп. преобразований.

Итог:
1. Сжатый XML дамп в 308MB преобразуется в сжатый JSONl файл в 325 MB
2. Время преобразования на простом десктопе порядка 2 минут.
3. С итоговым результатом можно работать как с базой данных DuckDB и делать запросы.

Еще лучше было бы будь возможность преобразовать в parquet, но и такой вариант пригоден к дальнейшей работе. К тому же parquet наиболее эффективен на хорошо сжимаемых колонках, а тут много викитекста для которого колоночное сжатие того же эффекта не несёт.

Пример на то и пример чтобы продемонстрировать саму идею. Simplewiki небольшая вики и на русскоязычной или испаноязычной википедиях процесс займёт дольше времени, но всё это демонстрация того что с этими данными можно работать локально и с удобными инструментами.

P.S. Если кто-то знает хорошие движки и примеры быстрого преобразования викидампов в компактные локальные базы данных, поделитесь плз.

Ссылки:
[1] https://github.com/apicrafter/pyiterable/tree/main/examples/simplewiki
[2] https://dumps.wikimedia.org

#dataengineering #datatools #opendata #wikipedia

Читать полностью…

Ivan Begtin

Кстати, помните я расхваливал китайский портал/агрегатор научных данных SciDb [1].

Так вот его можно не только хвалить. После некоторого исследования его содержания он на 100% соответствует подходу "главное не быть, а казаться". Из заявленных 10 миллионов наборов данных лишь 18 тысяч имеют присоединённые файлы и загружены через сам портал, ещё 754 тысячи собраны из нескольких больших открытых порталов научных данных таких как Zenodo и PANGAEA, а всё остальное - это просто слепок поискового индекса по данным DataCite, сильно замусоренного и, объективно, без значимых метаданных, да и не факт что ссылки на сами данные.

С одной стороны, как обидно, так мало данных. С другой стороны, очередное подтверждение приоритетов индексирования и то что из SciDB можно собирать только те данные что туда были загружены. Другой вопрос что отфильтровать их непросто.

В любом случае удивительно то что вместо индексации тех же геномных данных китайцы пошли по этому пути.

Ссылки:
[1] https://www.scidb.cn

#opendata #china #datasets #datacatalogs

Читать полностью…

Ivan Begtin

Один из крупнейших проектов с большими научными данными - это Китайский национальный центр биоинформации через сайт которого доступно более 53 Петабайт геномных данных [1]. Причём в августе 2021 года их было всего 5 Петабайт и сейчас можно наблюдать 10-кратный рост за 3 года. Такими темпами к концу 2025 года будут все 100 Пб.

Внутри центра много разных баз данных и архивов, от нескольких терабайт, до десятка петабайт. Все данные доступны в форматах специфичных в для биоинформатики и геномных исследований.

Часть этих данных полностью открытые и их можно сразу скачать через FTP или HTTP интерфейсы, часть требуют процедуры получения доступа через профильный комитет доступа к данным Data Access Committee(DAC) [2].

Ссылки:
[1] https://www.cncb.ac.cn/services
[2] https://ngdc.cncb.ac.cn/gsa-human/browse/HRA002875

#opendata #china #data #genomics #bigdata

Читать полностью…

Ivan Begtin

Почему я в последнее время много думаю и пишу про геоданные?
Есть 4 основных типов общедоступных данных данных которые собираются в Dateno:
- открытые данные (opendata). С ними всё довольно понятно, их много, не не бесконечно много. Большая часть порталов известны, далее просто длительная методическая работа по их систематизации и сбору датасетов
- научные данные. Тут не всё так понятно, и этих данных по объёму более всего в мире, но в каждой науке свои виды каталогов данных, стандарты и тд. За пределами отдельных научных дисциплин у этих данных не так много пользы
- статистика и индикаторы. Нужны всем, чаще стандартизированы, поддаются систематизированному сбору и "расщепляются" на множество поддатасетов в привязке к конкретным странам и территориям. Много усилий требуется по агрегации национальных каталогов статистики.
- геоданные. Их много, чаще стандартизированы, но поиск и каталогизация явно недостаточны. Предыдущие попытки чаше безуспешны.

Остальные типы данных - это данные для машинного обучения, данные из коммерческих маркетплейсов или датасеты из порталов микроданных (социология), все они сильно меньше количественно.

Существенный количественный рост данных в Dateno будет от трёх категорий: научные данные, данные индикаторов и геоданные.

При этом научные данные можно _очень быстро_ загрузить из 3-4 крупных источников и это добавит +20 млн датасетов и создаст огромные пузыри данных по нескольким языкам, категориям и темам.

Данные индикаторов стремительно превратят Dateno в портал по макроэкономике/макростатистике. Их также можно загрузить +5 млн датасетов в короткое время.

А в агрегированных геоданных сейчас есть объективный "пузырь", огромное число датасетов по Германии отчего в любом поисковике по данным доля геоданных их Германии достигает 40-60% от общего числа. Если не больше.

Конечно, в какой-то момент, можно перестать думать про этот баланс и залить в Dateno несколько десятков миллионов датасетов и уже потом заниматься вопросами качества индекса. Так, например, сделали в агрегаторах научных данных типа SciDb и OpenAIRE. Там очень много мусора который создаёт количество датасетов, но который и почти не найдёшь потому что эти мусорные данные даже не подпадают под фасеты. В общем-то там ставка однозначно сделана на количество датасетов, а в этом смысле нет проблемы достигнуть того же.

#opendata #data #dateno #thoughts #geodata

Читать полностью…

Ivan Begtin

В рубрике как это устроено у них раскрытие данных в штате Нью Джерси, США. Раскрытие данных в штате осуществляется в рамках
NJ Geographic Information Network [1] проекте основанном NJOGIS (New Jersey Office of GIS).

В рамках этого проекта публикуются геоданные штата, начиная с информации о дорогах, кадастровых участках и иных данных большая часть которых доступна через портал в облаке ArcGIS [3], а также на сайте проекта публикуются изображения аэрофотосъёмки c 1920 по 2020 годы [4] доступные, как в виде сервисов по стандарту WMS, так и данных для массовой выгрузки.

Что может показаться необычным, но, на самом деле, уже становится стандартным способом раскрытия многих данных, так это то что все крупные датасеты предоставляются не только для выгрузки по прямым ссылкам, но и изнутри инфраструктуры Amazon AWS с помощью их утилиты для командной строки.

Общий объём данных измеряется десятка терабайт, начиная от простых CSV таблиц, до большого числа GeoTIFF файлов оптимизированных для облаков.

Ссылки:
[1] https://njgin.nj.gov
[2] https://njgin.nj.gov/njgin/about/ogis/
[3] https://njogis-newjersey.opendata.arcgis.com/
[4] https://njgin.nj.gov/njgin/edata/imagery/index.html

#opendata #usa #datasets #geodata #datacatalogs

Читать полностью…

Ivan Begtin

В рубрике как это устроено у них национальный портал открытых данных Германии GovData.de [1] включает более 117 тысяч наборов данных, большую часть которых агрегируют из региональных порталов открытых данных отдельных территорий и городов, более всего, 28 тысяч из земли Schleswig-Holstein, но и остальные данные чаще региональные и хорошо обновляемые. Федеральный портал стремительно пополняется, ещё несколько месяцев назад там было около 88 тысяч наборов данных.

Внутри портала работает CKAN, поверх него сделан интерфейс с помощью Liferay.

Особенность портала в том что на нём далеко не все открытые данные Германии и на портале данных ЕС имеется 726+ тысяч наборов данных. Остальные 609 тысяч наборов данных собираются из каталога геоданных Германии GDI.

В Dateno тоже есть данные по Германии и основные данные не с госпортала GovData, а как раз с геопорталов отдельных земель. Собственно обилие данных по Германии даёт значительное искажение картины доступности данных по Западной Европе в Европейском портале и в Dateno. Что вызвано тем что данных в Германии, действительно, раскрывается очень много и тем что нужно больше индексировать источники данных по другим европейским странам.

А пока можно обратить внимание что крупные национальные порталы вроде GovData также идут по пути развития фасетного поиска. Больше интересных фильтров, больше возможности найти нужные наборы данных

Ссылки:
[1] https://www.govdata.de

#opendata #germany #europe #datasets #data

Читать полностью…

Ivan Begtin

К вопросу о poor man data engineering, как обрабатывать данные в условиях ограниченных ресурсов с минимальными нагрузками на диск и на оперативную память, в первую очередь.

В работе в Dateno есть задача по добавлению стат. индикаторов в основной индекс и расширение фасетов на данными о частоте обновления индикаторов и временном промежутке который он охватывает (год начала и год окончания). Не у всех датасетов такие метаданные есть и есть особенность датасетов Европейского центрального банка (ECB) в том что для массовой выгрузки доступны сами данные, но не метаданные. Хотя обычно наоборот. А в данном случае можно скачать все значения, а метаданные из них надо извлечь.

Эти значения публикуются в виде коллекции из 108 CSV файлов общим объёмом в 93GB. Это не то чтобы много, но много для статистики и для обработки на десктопе. Первая мысль которая возникает, а не уменьшить ли эти данные в объёме. Можно их сжать, но ещё эффективнее преобразовать в parquet. После преобразования они занимают 664 MB. Это 0,7% от изначального объёма, итого сжатие в 140 раз! Такая эффективность редкость, обычно сжатие в 5-15 раз, но здесь накладывается эффект колоночного сжатия поскольку данные ECB денормализованные, эффективность хранения там уступает полноте публикации и простоте раскрытия.

Далее обработка. Чтобы получить метаданные каждого индикатора надо:
1. Получить список уникальных идентификаторов индикаторов
2. Для каждого ключа сделать запрос одной записи для извлечения метаданных
3. Получить минимальное и максимальное значения временного периода
4. Извлечь год из минимального и максимального значения если период не равен году.

Итого 3 запроса, которые, наверняка, можно было бы оптимизировать до 2-х и которые можно делать напрямую к файлам parquet. Однако ситуация осложняется тем что эти файлы parquet хотя и хорошо сжаты, но могут содержать до 570+ тысяч индикаторов, как это, например, происходит с датасетом Securities Issues Statistics, который в оригинале составляет 19GB CSV файл и содержит 30 миллионов строк.

При работе с этим датасетом, даже после преобразования в parquet, DuckDB "съедает" до 15GB RAM и работает, хотя и быстро, но не так быстро как хотелось бы.

Варианты решения:
1. Попробовать преобразовать данные в базу DuckDB, построить индексы и так обрабатывать. Минус: резко увеличивается объём хранения данных, не увеличивается скорость обработки.
2. Попробовать нормализовать данные и извлекать метаданные из нормализованных баз. Минус: время на преобразование многократно больше времени сбора метаданных из существующих parquet файлов, а также у разных датасетов разная схема данных и требуется потратить больше времени на их анализ.

Варианты с тем чтобы загрузить в какую-то другую СУБД или даже не рассматривались поскольку задача именно в обработке на среднемощном десктопе/ноутбуке и без резкого роста объёмов хранения.

Итоговое решение оказалось очень простым. Специфика запросов в том что они полностью локализованы внутри данных конкретного индикатора.
Но, так повезло, что в этих датасетах индикаторы разделены по группам являющихся странами или территориями, от 8 до 33 в одном датасете и разделять можно по ним. Данные отдельных индикаторов полностью попадают в один из разделённых файлов. И, одна из фишек DuckDB - это очень дешёвое разделение данных с точки зрения скорости и нагрузки на память. До обработки большого датасета через серию COPY TO операций из него создаются десятки меньших .parquet файлов каждый из которых обрабатывается по отдельности.

Итого:
- средняя скорость однопоточной обработки достигает 78 индикаторов в секунду
- потребление RAM не превышает 100MB, а в среднем держится менее 50MB
- потребление диска +664MB, теперь не в 140 раз меньше чем оригинальные CSV файлы, а только в 70 раз, но всё ещё очень и очень мало.

Понятно что перенеся всё это на серверную инфраструктуру, в несколько потоков и тд. можно многократно ускорить обработку данных, но и так с помощью DuckDB конвейеры данных можно запускать на очень дешёвом железе и получать приемлемый результат.

#data #thoughts #tech #duckdb #dataengineering

Читать полностью…

Ivan Begtin

В рубрике как это устроено у них, подборка общедоступных каталогов данных Республики Беларусь:

Статистика

- http://dataportal.belstat.gov.by Портал статистических данных Белстата. Экспорт данных в XML, SDMX, XLS. Есть недокументированное API

Геоданные
- https://meta.geo.by/geoserver сервер геоданных на базе GeoServer. По умолчанию требует авторизации, но прямые ссылки на OGC API доступны
- https://gisoopt.by/arcgis/rest/services - ArcGIS сервер национального парка Нарочанский
- https://oopt.gis.by/arcgis/rest/services/ - ArcGIS сервер Национальной академии геоинформационных систем
- https://gis.maps.by/arcgis/rest/services/ - ArcGIS сервер Госкартгеоцентра
- https://vitebsk.gismap.by/arcgis/rest/services - ArcGIS сервер с геоданными Витебска

Государственного портала открытых данных в РБ никогда не существовало.
Общественный портал opendata.by закрылся несколько лет назад.

#opendata #datacatalogs #belarus #data

Читать полностью…

Ivan Begtin

В рубрике интересных проектов на данных GeoSeer [1], поисковая система по геоданным, а конкретнее по точкам API по стандартам WFS, WMC, WCS по всему миру. Я писал о нём год назад [2] и в течение года ни раз обращал внимание.

Из интересного:
1. 3.5 миллиона проиндексированных георесурсов/геоданных
2. За деньги доступно API для поиска
3. Любопытная статистика по охвату [3]
4. Дают расширенное описание георесурсов с учётом его геохарактеристик (области, атрибутов WFC/WMS и др.) [4]

Из особенностей:
- более 60%, примерно 2 миллиона записей - это геоданные Германии. Для сравнения в Dateno 4.4 миллиона георесурсов из которых к Германии относятся 1.89, это около 43%.
- реестр источников не публикуют, вернее обещают доступность только через API при платном тарифе
- фасетного поиска нет, только достаточно простой язык запросов
- поскольку индексируются WMS, WFC, WCS и WMTS то охватывает гораздо больше точек подключения в этих стандартах, но не охватывает все остальные геоданные, на порталах открытых данных и в каталогах ArcGIS и не только.

Разницу между GeoSeer и Dateno можно описать так:
1. В Dateno есть публичный реестр всех источников, он не скрывается, любой желающий может скачать его как датасет [4].
2. В Dateno есть много открытой статистики [5]. Она пока мало визуализируется, но с ней можно работать.
3. В Dateno есть быстрый фасетный поиск и фильтрация по странам/территориям и другим критериям
4. Dateno агрегирует геоданные из порталов неохваченных GeoSeer поскольку они не по стандартам OGC.
5. Пока в Dateno нет охвата любых источников геоданным по стандартам OGC
6. Пока в Dateno нет расширенного вывода метаданных для георесурсов

В целом пересечение индексов GeoSeer и Dateno в части геоданных около 60-80%. GeoSeer для проекта выглядит как хороший референсный проект для проверки полноты собственной базы.

Ссылки:
[1] https://www.geoseer.net
[2] /channel/begtin/5071
[3] https://www.geoseer.net/stats/
[4] https://github.com/commondataio/dataportals-registry/
[5] https://github.com/commondataio/dateno-stats

#opendata #datasearch #datasets #geodata #spatial

Читать полностью…

Ivan Begtin

Кому принадлежат языки? Я имею в виду не языки программирования, а я разговорные языки. Вопрос этот одновременно философский, не без политики, и очень практичный.

Практичный потому что во многих задачах связанных с аттрибутированием объектов, будь то документы, данные, тексты, изображения и тд. можно идентифицировать язык его содержания, то далеко не всегда содержатся сведения о его географической привязке/происхождении. К примеру, если содержание на испанском языке, то как понять связан ли объект/происходит ли из Испании, а может он из Мексики, или из Чили?

Аналогично, если содержание на арабском языке, то то есть десяток стран откуда оно может происходить. И так довольно много разных языков, в первую очередь межгосударственных языков, официальных языков ООН, языков распространившихся в результате культурной/колониальной экспансии с 14 по 20 века и тд.

Какие-то языки, такие как английский, французский, испанский, португальский, уже давно имеют меньше носителей речи в странах своего происхождения чем в странах культурной и языковой экспансии.

Одновременно с этим есть узко национальные языки, применение которых почти всегда означает что объект связан с конкретной культурной средой находящейся в конкретной стране. К примеру, японский, малайский, индонезийский, фарси, польский, финский и другие языки имеют почти 100% атрибуцию с конкретной географической территорией.

Всё так, языки можно частично разметить и использовать матрицу сопоставления языка и страны. Но так работает не всегда. Один объект может несколько языковых и территориальных характеристик. К примеру, румынский исследователь на румынском языке пишет о геологических разломах в Иране. Относить его статью к Румынии или к Ирану? Или польский турист публикует GPX трек путешествия по Греции, описывая его на польском языке. Относить ли его к Польше или к Греции? Эти случаи не самые сложные, их можно разбирать по приоритетности геопривязки. Имея несколько геоклассификацией определять несколько или одну приоритетными к контексте.

Самое сложное, пока что, из того что я встречал - это статьи в глобальных энциклопедиях вроде Википедии. Как их классифицировать? Как разметить все статьи в выбранной вики с точки зрения геопривязки? Как вообще превратить Википедию в базу именно геоданных? Понятно что часть статей имеющих координаты или указание территорий легко сопоставляются через Wikidata, но большую часть статей простым образом не разметишь.

Всё это практические, прикладные вопросы взгляда на языки. У меня перед глазами есть несколько задач анализа больших баз данных с содержанием на разных языках где такие вопросы очень актуальны.

А есть ещё те самые философские вопросы. Кому принадлежат языки, буквально? Примерно как некоторые развивающиеся страны пытающиеся отказаться от английского или французского языка, как языка колониального наследия. Потому что в их восприятии это не универсальные языки, а языки конкретных стран Великобритании и Франции.

Или почему, к примеру, у многих есть восприятие что у России монополия на русский язык? Санкционные действия многих создателей контента пошли по пути отказа от русского языка. Хотя кроме РФ у него широкая диаспора, это разговорный язык всей Центральной Азии и значительной части Кавказа.

Национальные регуляторы и цензоры также приоритетом видят для себя языки которые они считают "своими". Что добавляет давления на глобальные проекты знаний с их стороны.

Не должны ли все языки быть достоянием человечества и наступит ли тот момент когда ни одно национальное правительство не будет "владеть" языками тех кто живёт на территории их стран?

#languages #thoughts

Читать полностью…

Ivan Begtin

Мы ищем аналитика в Сбериндекс для развития портала открытых данных

Сбериндекс - это исследовательская лаборатория Сбера, которая работает над экономической статистикой на основе транзакционных данных банка. Осенью этого года мы начинаем модернизацию сайта открытых данных www.sberindex.ru, которая ориентирована на рост детальности наборов данных и удобство для пользователей. Мы ищем аналитика, которому было бы интересно внедрять передовые практики поставки статистических данных и развивать функциональность портала открытых данных.

Обязанности и функции:
◽️ Проводить анализ передовых практик порталов и стандартов открытых статистических данных , быть заказчиком и консультантом в проектировании и разработке портала открытых данных
◽️ Быть менеджером продукта - администрирование, мониторинг размещения данных, интеграций, инициация изменений, стратегия развития портала и т.д.
◽️ Координировать и организовывать сотрудничество с разработчиками, пользователями, поставщиками данных, исследователями
◽️ Участвовать в разработке дэшбордов, визуализаций данных, лендингов для исследований совместно с аналитиками данных
◽️ Разрабатывать техническую документацию, руководства для пользователей, стандарты лучших практик, схемы рабочих процессов для публикации данных
◽️ Помогать пользователям и владельцам данных, проводить обучение, информировать о работе портала

Требования:
◽️ высшее образование (техническая специальность)
◽️ прикладные навыки использования основных библиотек Python
◽️ знание основ управления данными, баз данных, визуализации данных, опыт работы с API
◽️ знание различных форматов данных (parquet, JSON-Stat, CSV и т.п.) и метаданных
◽️ интерес к стандартам и практикам публикации открытых данных, готовность погружаться в изучение и внедрение лучших практик
◽️ плюсом будут навыки разработки технических требований, знакомство с процессами разработки порталов данных, умение определять потребности пользователей дата-продуктов

Резюме и мотивационное письмо можно направлять на dtsyplakova@gmail.com

Читать полностью…
Подписаться на канал