Segment Anything
The Segment Anything Model (SAM) produces high quality object masks from input prompts such as points or boxes, and it can be used to generate masks for all objects in an image.
Новая модель от Meta - Segment Anything, нейросеть, которая в один клик может вырезать любой объект из фото или видео.
🖥 Github: https://github.com/facebookresearch/segment-anything
⭐️ Project: https://segment-anything.com/
⏩ Paper: https://arxiv.org/abs/2304.02643v1
💨 Dataset: https://segment-anything.com/dataset/index.html
ai_machinelearning_big_data
Ищем учеников на бесплатное обучение по созданию искусственного интеллекта с нуля. Опыт программирования не важен!🤖
Всего за 3 вечера под руководством Дмитрия Романова - основателя Университета Искусственного Интеллекта, лидера обучения AI-разработке в РФ, вы с легкостью напишете свой первый искусственный интеллект👨💻
Какие нейронные сети вы создадите?
▫️Классификация людей на входящих и выходящих из автобуса
▫️Обнаружение возгораний
▫️Оценка стоимости квартир
▫️Оценка резюме соискателей
▫️Прогнозирование стоимости полиметаллов
▫️Сегментация изображений самолетов
▫️Распознавание команд умного дома⠀
Лучше освоить навыки создания нейронных сетей вам помогут домашние задания с проверкой от кураторов.⠀
Приходите на бесплатное обучение и напишите искусственный интеллект за 3 вечера💪
Регистрация по ссылке
⚡️Token Merging for Stable Diffusion
Token Merging (ToMe) speeds up transformers by merging redundant tokens, which means the transformer has to do less work.
Используя только чистый python и pytorch, Token Merging для SD ускоряет генерацию изображений в 2 раза, за счет объединения лишних токенов.pip install tomesd
🖥 Github: https://github.com/dbolya/tomesd
⏩ Paper: https://arxiv.org/abs/2303.17604v1
💨 Blog: https://research.facebook.com/blog/2023/2/token-merging-your-vit-but-faster/
ai_machinelearning_big_data
vid2vid-zero for Zero-Shot Video Editing
We propose vid2vid-zero, a simple yet effective method for zero-shot video editing.
Мы предлагаем vid2vid-zero, простой, но эффективный метод редактирования видео.
🖥 Github: https://github.com/baaivision/vid2vid-zero
⏩ Paper: https://arxiv.org/abs/2303.17599v1
💨 Dataset: https://paperswithcode.com/dataset/sounddescs
ai_machinelearning_big_data
WavCaps: A ChatGPT-Assisted Weakly-Labelled Audio Captioning Dataset for Audio-Language Multimodal Research
Propose a three-stage processing pipeline for filtering noisy data and generating high-quality captions, where ChatGPT.
Конвейер обработки для фильтрации зашумленных данных и создания высококачественных титров.
🖥 Github: https://github.com/xinhaomei/wavcaps
⏩ Paper: https://arxiv.org/abs/2303.17395v1
💨 Dataset: https://paperswithcode.com/dataset/sounddescs
ai_machinelearning_big_data
3D Line Mapping Revisited
LIMAP is a toolbox for mapping and localization with line features.
Интерфейсы для различных геометрических операций над 2D/3D линиями.
🖥 Github: https://github.com/cvg/limap
⏩ Paper: https://arxiv.org/abs/2303.17504v1
💨 Dataset: https://paperswithcode.com/dataset/hypersim
ai_machinelearning_big_data
DPF: Learning Dense Prediction Fields with Weak Supervision
🖥 Github: https://github.com/cxx226/dpf
⏩ Paper: https://arxiv.org/abs/2303.16890v1
💨 Dataset: https://paperswithcode.com/dataset/pascal-context
ai_machinelearning_big_data
AutoAD: Movie Description in Context
MAD: A Scalable Dataset for Language Grounding in Videos from Movie Audio Descriptions.
MAD - это масштабный набор данных, собранный из аудиоописаний фильмов.
🖥 Github: https://github.com/Soldelli/MAD
⏩ Paper: https://arxiv.org/abs/2303.16899v1
💨 Dataset: https://paperswithcode.com/dataset/lsmdc
ai_machinelearning_big_data
One-Stage 3D Whole-Body Mesh Recovery with Component Aware Transformer
🖥 Github: https://github.com/IDEA-Research/OSX
⏩ Paper: http://arxiv.org/abs/2303.16160
⭐️ Project: https://osx-ubody.github.io/
💨 Dataset: https://paperswithcode.com/dataset/expose
ai_machinelearning_big_data
Federated Learning using Hugging Face and Flower
В этом уроке рассматривается, как использовать Hugging Face для Federated Learning (так называется совокупность методов обучения ML моделей на распределённых данных) языковых моделей на нескольких клиентах с помощью фреймворка Flower
This tutorial will show how to leverage Hugging Face to federate the training of language models over multiple clients.pip install datasets evaluate flwr torch transformers
🤗 Hugging face: https://huggingface.co/blog/fl-with-flower
🌷 Flower: https://flower.dev/
🖥 Colab: https://colab.research.google.com/github/huggingface/blog/blob/main/notebooks/fl-with-flower.ipynb
🖥 Github: https://github.com/adap/flower/tree/main/examples/quickstart_huggingface
ai_machinelearning_big_data
Conditional Image-to-Video Generation with Latent Flow Diffusion Models
New approach for cI2V using novel latent flow diffusion models (LFDM) that synthesize an optical flow sequence in the latent space based on the given condition to warp the given image.
Генерация видео из изображений с использованием моделей диффузии.
🖥 Github: https://github.com/nihaomiao/cvpr23_lfdm
⏩ Paper: https://arxiv.org/abs/2303.13744v1
💨 Dataset: https://drive.google.com/file/d/1dRn1wl5TUaZJiiDpIQADt1JJ0_q36MVG/view?usp=share_link
ai_machinelearning_big_data
🔥 Fix the Noise: Disentangling Source Feature for Controllable Domain Translation
A new approach for high-quality domain translation with better controllability.
Новый подход, который позволяет плавно контролировать степень сохранения исходных характеристик при генерации изображений.
🖥 Github: https://github.com/LeeDongYeun/FixNoise
⏩ Paper: https://arxiv.org/abs/2303.11545v1
💨 Dataset: https://paperswithcode.com/dataset/metfaces
ai_machinelearning_big_data
Train your ControlNet with diffusers 🧨
ControlNet is a neural network structure that allows fine-grained control of diffusion models by adding extra conditions.
В этой статье подробно рассматривается каждый шаг, обучения модельи Uncanny Faces - модель поз лиц, основанную на синтетических 3D лицах.
🤗 Hugging face: https://huggingface.co/blog/train-your-controlnet#
🖥 Github: https://github.com/huggingface/blog/blob/main/train-your-controlnet.md
⏩ ControlNet training example: https://github.com/huggingface/diffusers/tree/main/examples/controlnet
ai_machinelearning_big_data
ReVersion : Diffusion-Based Relation Inversion from Images
ReVersion for the Relation Inversion task, which aims to learn a specific relation (represented as "relation prompt") from exemplar images.
Фреймворк для поиска общих сущностей в изображениях для генерации промптов для синтеза новых изображений.
🖥 Github: https://github.com/ziqihuangg/reversion
⏩ Paper: https://arxiv.org/abs/2303.13495v1
💨 Project: https://ziqihuangg.github.io/projects/reversion.html
⏩ Video: https://www.youtube.com/watch?v=pkal3yjyyKQ
ai_machinelearning_big_data
NeAT: Learning Neural Implicit Surfaces with Arbitrary Topologies from Multi-view Images
Novel neural volume rendering method, which uses SDF and validity to calculate the volume opacity and avoids rendering points with low validity.
Новая нейронная система рендеринга, которая может опрелелять различные поверхности на фото с произвольной топологией на основе многоракурсных изображений.
🖥 Github: https://github.com/xmeng525/NeAT
⏩ Paper: https://arxiv.org/abs/2303.12012v1
⏩ Dataset: https://www.dropbox.com/sh/utn5rnohmr0y2c8/AACdets4PQrP5CB1KwGkpOFUa?dl=0
💨 Project: https://xmeng525.github.io/xiaoxumeng.github.io/projects/cvpr23_neat
ai_machinelearning_big_data
WeakTr: Exploring Plain Vision Transformer for Weakly-supervised Semantic Segmentation
🖥 Github: https://github.com/hustvl/weaktr
⏩ Paper: https://arxiv.org/abs/2304.01184v1
💨 Dataset: https://paperswithcode.com/dataset/imagenet
ai_machinelearning_big_data
⭐️ HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in HuggingFace
Language serves as an interface for LLMs to connect numerous AI models for solving complicated AI tasks!
Система, использующая LLM (например, ChatGPT) для подключения различных моделей ИИ в сообществах машинного обучения (например, HuggingFace) для решения задач ИИ.
🖥 Github: https://github.com/microsoft/JARVIS
⏩ Paper: https://arxiv.org/abs/2303.17604v1
ai_machinelearning_big_data
Пока вы тренируете ИИ, чтобы совершенствовать навыки, развивать науку, создать стартапы, другие тренируют его, чтобы украсть ваши идеи, код, криптоактивы, деньги со счетов - выкрасть все, что имеет хоть какую-либо ценность.
Или вы думаете, что ребята из Северной Кореи тренируют ИИ, чтобы он про Ким Чен Ыну оды писал? На даркнет площадках уже вовсю идет работа по использованию ИИ в сложных атаках на простых пользователей.
Ваша задача не только заработать, но и не потерять. Удивительно, но ИИ, который используется злоумышленниками, можно использовать и для защиты данных. Мы будем говорить обо всем этом на CyberWeekend, с 5 по 15 апреля. И мы ждем тебя, мероприятие бесплатное, подписывайся на канал и будь в курсе событий.
Ищем учеников на бесплатное обучение по созданию искусственного интеллекта с нуля. Опыт программирования не важен!🤖
Всего за 3 вечера под руководством Дмитрия Романова - основателя Университета Искусственного Интеллекта, лидера обучения AI-разработке в РФ, вы с легкостью напишете свой первый искусственный интеллект👨💻
Какие нейронные сети вы создадите?
▫️Классификация людей на входящих и выходящих из автобуса
▫️Обнаружение возгораний
▫️Оценка стоимости квартир
▫️Оценка резюме соискателей
▫️Прогнозирование стоимости полиметаллов
▫️Сегментация изображений самолетов
▫️Распознавание команд умного дома⠀
Лучше освоить навыки создания нейронных сетей вам помогут домашние задания с проверкой от кураторов.⠀
Приходите на бесплатное обучение и напишите искусственный интеллект за 3 вечера💪
Регистрация по ссылке
⚠️Пройдите тест на углубленные знания в сфере Machine Learning
🔓 Вырвитесь из однотипных задач. Освойте продвинутые подходы.
Ответьте на 10 вопросов и проверьте, насколько вы готовы к обучению на углубленном курсе - «Machine Learning. Advanced» от OTUS и его партнера — Сбера.
⏰ Время прохождения теста ограничено 30 минут
📌 РЕЗУЛЬТАТ ПРОХОЖДЕНИЯ КУРСА:
Вы освоите продвинутые приемы машинного обучения, которые позволят вам уверенно себя чувствовать на ведущих Middle/ Senior позициях и справляться даже с нестандартными задачами.
Протестируйте обучение на открытом уроке:
✅ Байесовское А/B-тестирование — https://otus.pw/peDS/
🖌ПРОЙТИ ТЕСТ:
https://otus.pw/dXVx/
Системная и бизнес-аналитика: чем занимаются специалисты этого направления в банке? Узнаешь на лекции Digital Лектория Газпромбанк.Тех.
Александр Чунаев, Head профессии по системному анализу в розничном блоке, расскажет:
— чем уникальна работа системного и бизнес-аналитика в крупной компании
— какие компетенции и навыки необходимы востребованным специалистам
— что из терминологии и инструментов аналитики является основным стеком бизнес-аналитиков
— как выглядит карьерный путь в сфере аналитики.
Когда: 7 апреля, 16:00 (по МСК)
Регистрируйся на вебинар — s.gpb.ru/m/xt9YoS5DI
И готовь вопросы спикеру: авторы трех самых интересных получат памятный приз от Газпромбанк.Тех!
🔉 Три темы, которые затронут на апрельском Дзен-митапе про рекомендательные системы:
1. Факторизация: как обучить её в реальном времени и перенести с ALS на SGD;
2. Как сэкономить вычислительные ресурсы во время обучения рекомендательных систем;
3. Как улучшить рекомендации и способы отбора кандидатов для пользователя.
После докладов участников ждут ML-квиз и афтепати, на котором можно будет познакомиться с единомышленниками. Митап начнется 13 апреля в 19:00 в московском офисе Дзена.
Переходите по ссылке и регистрируйтесь
Intern Meetup Week в Яндексе 🎉
С 17 по 20 апреля в Яндексе пройдёт неделя митапов для начинающих разработчиков. Будет доступен офлайн и онлайн формат.
19 апреля состоится митап для направлений ML и аналитика.
Регистрация по ссылке: https://clck.ru/33qW5b
В программе лекции экспертов о технологиях, общение с руководителями команд и рекрутерами, нетворкинг и подарки.
При отборе на митапы у вас есть шанс получить приглашение на пробное собеседование на стажировку в Яндекс 🔥
📆Когда: 19 апреля 18:00 - 21:30, сбор гостей с 17:30
🌐Где: офис Яндекса, ул. Льва Толстого, 16, м.Парк Культуры и трансляция онлайн
Все подробности и регистрация по ссылке: https://clck.ru/33qW5b
А чтобы быть в курсе всех новостей Young&&Yandex, подписывайтесь на чат-бот.
Ищем учеников на бесплатное обучение по созданию искусственного интеллекта с нуля. Опыт программирования не важен!🤖
Всего за 3 вечера под руководством Дмитрия Романова - основателя Университета Искусственного Интеллекта, лидера обучения AI-разработке в РФ, вы с легкостью напишете свой первый искусственный интеллект👨💻
Какие нейронные сети вы создадите?
▫️Классификация людей на входящих и выходящих из автобуса
▫️Обнаружение возгораний
▫️Оценка стоимости квартир
▫️Оценка резюме соискателей
▫️Прогнозирование стоимости полиметаллов
▫️Сегментация изображений самолетов
▫️Распознавание команд умного дома⠀
Лучше освоить навыки создания нейронных сетей вам помогут домашние задания с проверкой от кураторов.⠀
Приходите на бесплатное обучение и напишите искусственный интеллект за 3 вечера💪
Регистрация по ссылке
🔥Какие знания точно нужны программисту? Ответ — все ключевые понятия в Computer Science.
Начните изучать эту область 30 марта в 20:00 на вебинаре, приуроченном к старту онлайн-курса «Computer Science» в OTUS. Тема открытого урока: «Ввод-вывод в компьютерных системах».
📚Что интересного будет на занятии?
— Рассмотрим основы архитектуры ввода-вывода (I/O) в компьютерных системах.
— Изучим роль I/O систем в компьютерной архитектуре, рассмотрим различные типы устройств и их использование в компьютерных системах.
— Обсудим необходимые аппаратные компоненты, такие как память
— Научимся использовать программно устройства ввода-вывода.
Результат занятия 👉 вы разберетесь в роли, типах I/O систем в компьютерной архитектуре и способов взаимодействия с ними.
🎁 Продолжить изучение Computer Science вы сможете на курсе, доступном в рассрочку.
Для участия зарегистрируйтесь: https://otus.pw/ebgF/
Альфа-Банк открывает набор на второй поток магистратуры по Data science в МФТИ🔥
Если у вас есть диплом бакалавра или специалиста, вы умеете программировать, знаете основы для подготовки данных для машинного обучения и хотите научиться:
📌 Управлять циклом создания модели: от сбора данных до оценки эффективности
📌 Работать с большими объёмами данных, используя современный стек технологий
📌 Анализировать и моделировать данные с помощью алгоритмов Python
📌 Решать прикладные задачи Machine Learning и Deep Learning
📌 Защищать идеи, эффективно работать в команде
Обучение проходит очно, всем студентам во время обучения выплачивается стипендия и по окончании магистратуры выпускники получат диплом государственного образца от МФТИ, а лучшие - оффер в Альфа-Банк🅰️
Как поступить?
Подайте онлайн-заявку до 31 марта, решите одну из двух задач
по машинному обучению и пройдите интервью.
Больше информации — на сайте магистратуры и в ТG @alfabankmipt
Почему мы всё время начинаем и бросаем учить английский?
Одна из причин — мы не знаем свой уровень языка. В итоге берёмся за контент, который нам не по силам. Например, сериал «Друзья» часто советуют смотреть тем, кто начинает учить язык, но в нём полно юмора, который начинающие пока понять не могут.
В итоге разрыв знаний удручает и мотивация снова падает.
Если вы готовы дать английскому ещё один шанс, мы поможем поверить в свои силы и довести дело до конца.
Приходите на бесплатную консультацию в Яндекс Практикум:
- Проведём устный тест на уровень языка,
- Покажем, чего реально добиться за полгода изучения,
- Расскажем, как наши курсы помогут достичь цели.
Записаться
👾Хватит играться! Давай изучать ИИ
Data Science | Machinelearning - место, где рассказывают простым языком об изнанке нейросетей, анализе данных и алгоритмах.
То что нужно в эпоху нейронок: @devsp
🧬 Примите участие в международной конференции Data Fusion 2023 от ВТБ, которая пройдёт 13-14 апреля.
Конференция будет полезна разработчикам и специалистам в области Data Science, CDO, бизнес-заказчикам DS-продуктов и сервисов, представителям государства и науки.
Первый день конференции будет посвящен аспектам управления данными, практикам перехода на доверенные технологии, доступности дата-сетов для ИИ и другим темам, актуальным для CDO и руководителей бизнес-подразделений.
Программа 14 апреля адресована data science специалистам и исследователям. Темы докладов и сессий распределены по трем стримам: «ML+», «AI Classic», «ML Environment».
На конференции представят новейшие технологии и инструменты, а также будут проведены практические сессии и выступления ведущих предприятий. Не пропустите возможность улучшить свои навыки и расширить свои знания в области Data Science.
Участие в конференции бесплатное. Успейте зарегистрироваться по ссылке: https://cnrlink.com/datafusion69
→ 4 навыка для роста в аналитике
У Яндекс Практикума есть четыре курса для начинающих аналитиков. Они помогут освоить навыки уровня мидл, чтобы продвинуться в карьере и быстрее решать рутинные задачи.
1) SQL — получать и структурировать информацию из массивов данных, не перебирая их вручную.
2) Продуктовая аналитика — понимать запросы бизнеса и усилить резюме исследованиями для разных сфер.
3) Математика для аналитиков — укрепить знания и справляться с математическими секциями на собеседованиях.
4) Визуализация данных — освоить BI-инструменты, эффектно и понятно презентовать результаты исследований.
Выбирайте курс, учитесь и растите в карьере.