ai_machinelearning_big_data | Технологии

Telegram-канал ai_machinelearning_big_data - Machinelearning

27345

Самая актуальная информация из мира ML, Нейронных сетей,DI По всем вопросам- @haarrp @itchannels_telegram - 🔥 best it channels @pythonl - 🐍 @machinee_learning -chat @ArtificialIntelligencedl - AI @datascienceiot - ml 📚 @machinelearning_ru ml

Подписаться на канал

Machinelearning

✅️ T3Bench: Benchmarking Current Progress in Text-to-3D Generation

T3Bench - это новый фреймворк преобразования текста в трехмерное изображение, содержащий разнообразные текстовые промпты трех уровней комплексности, специально разработанные для 3D-генерации. Для оценки качества и выравнивания текста содержит две автоматические метрики, основанные на многоракурсных изображениях, создаваемых 3D-контентом.

🖥 Github: https://github.com/THU-LYJ-Lab/T3Bench

📕 Paper: https://arxiv.org/abs/2310.02977v1

⭐️ Dataset: https://paperswithcode.com/dataset/nerf

ai_machinelearning_big_data

Читать полностью…

Machinelearning

DSPy: Programming—not prompting—Foundation Models

DSPy - это фреймворк от Stanfordnlp для решения сложных задач с помощью языковых моделей и поисковых моделей. DSPy объединяет методы промпт-инжиниринга и тонкой настройки ЛМ, а также подходы к рассуждениям, самосовершенствованию и дополнению поисковых моделей и инструментов. Все это выстроено в модулях, которые компонуются и обучаются.

DSPy представляет автоматический компилятор, который учит LM, как выполнять декларативные шаги в вашей программе. В частности, компилятор DSPy осуществляет внутреннюю трассировку вашей программы и затем составляет высококачественные пропиты для больших ЛМ.

pip install dspy-ai

🖥 Github: https://github.com/stanfordnlp/dspy

Tutorial: https://github.com/stanfordnlp/dspy/blob/main/intro.ipynb

🖥 Colab: https://colab.research.google.com/github/stanfordnlp/dspy/blob/main/intro.ipynb

📕 Paper: https://arxiv.org/abs/2308.05734

⭐️ Dataset: https://paperswithcode.com/dataset/hotpotqa

ai_machinelearning_big_data

Читать полностью…

Machinelearning

👀 Как используются нейросети для планирования движения беспилотных автомобилей

Разработчик Яндекса рассказал, как беспилотный автомобиль предсказывает действия других участников движения и планирует свои действия с помощью нейросетей.

Тут и разбор логики свёрточных и трансформерных архитектур моделей для предсказания движения, и много формул для расчёта вероятных траекторий других машин и пешеходов.

Читайте о том, в чём проблемы Behavioral Cloning и как их решать, а ещё в чём преимущества машинного обучения перед эвристиками и чем может помочь Reinforcement Learning.

Habr: https://habr.com/ru/companies/yandex/articles/763348/

ai_machinelearning_big_data

Читать полностью…

Machinelearning

Emcee — это раннер для параллельного тестирования.


Разработчики из AvitoTech прокачали Emcee до облачного решения и нашли способ организовать сендбоксинг через виртуализацию на macOS, чтобы обезопасить трафик.


Подробности и ссылка на сам Emcee ищите здесь

Реклама ООО "Авито Тех", ИНН 9710089440
erid: LdtCK7JmP

Читать полностью…

Machinelearning

⚡️ Memory Gym: Partially Observable Challenges to Memory-Based Agents in Endless Episodes

Среда для обучения, тестирования и запуска агентов основе памяти.

🖥 Github: https://github.com/marcometer/endless-memory-gym

🖥 Colab: https://colab.research.google.com/drive/1LjlUOEer8vjGrz0rLM8pP5UyeNCsURkY?usp=sharing

📕 Paper: https://openreview.net/forum?id=jHc8dCx6DDr

⭐️ Dataset: https://paperswithcode.com/dataset/arcade-learning-environment

ai_machinelearning_big_data

Читать полностью…

Machinelearning

🤖 AutoAgents: A Framework for Automatic Agent Generation

Generate different roles for GPTs to form a collaborative entity for complex tasks.

AutoAgents, инновационный фреймворк, который адаптивно генерирует и координирует множество специализированных агентов для создания ИИ-команды в соответствии с различными задачами.

🖥 Github: https://github.com/LinkSoul-AI/AutoAgents

📕 Paper: https://arxiv.org/abs/2309.17288v1

⭐️ Demo: https://huggingface.co/spaces/LinkSoul/AutoAgents

ai_machinelearning_big_data

Читать полностью…

Machinelearning

Demystifying CLIP Data

MetaCLIP takes a raw data pool and metadata and yields a balanced subset over the metadata distribution.

Новый масштабируемый алгоритм MetaCLIP, работающий в конвейере обработки данных. MetaCLIP, примененная к CommonCrawl с 400 млн. пар данных "изображение-текст", превосходит данные CLIP по многим стандартным показателям. В классификации ImageNet точность MetaCLIP составляет 70,8%, что превосходит точность CLIP в 68,3% на моделях ViT-B.

🖥 Github: https://github.com/facebookresearch/metaclip

📕 Paper: https://arxiv.org/pdf/2309.16671v1.pdf

⭐️ Dataset: https://paperswithcode.com/dataset/laion-400m

ai_machinelearning_big_data

Читать полностью…

Machinelearning

🖥 40+ IT-компаний ищут студентов на оплачиваемую стажировку

 
На форуме “Найти IT” Сбер, Росатом, Kaspersky и другие топовые компании завалят вас предложениями о работе!

Найти IT” — это:
🔹 Мастер-классы и кейсы от крутых компаний
🔹 Предварительные собеседования и Q&A со спикерами
🔹 Мерч, призы и вкусная еда

И все это бесплатно 😲 Нужно только прийти!

Выбирате город и регистрируйтесь 👇
📍 Москва: 3 октября
📍 Санкт-Петербург: 7 октября
📍 Новосибирск: 26 октября 

Реклама. ООО "ФТ". ИНН 7731611424. erid: LjN8KUcKb

Читать полностью…

Machinelearning

🔎 Датасет для анализа русскоязычных отзывов на организации

Яндекс опубликовал крупнейший русскоязычный датасет, в котором содержится 500 тысяч отзывов, собранных с января по июнь 2023 года. Туда входят адреса и названия организаций, список рубрик, оценки пользователей и отзывы. Датасет позволяет, к примеру, производить сентимент-анализ и лингвистический анализ.

Github: https://github.com/yandex/geo-reviews-dataset-2023
Habr: https://habr.com/ru/companies/yandex/articles/763832/

@ai_machinelearning_big_data

Читать полностью…

Machinelearning

Опрос для опытных ИТ-специалистов.

Поделитесь мнением об ИТ-работодателях. Напишите, что вам нравится, а что — нет. Так компании смогут исправить ошибки, улучшить условия и присылать офферы, на которые хочется соглашаться.

Посмотрите, это займет не больше 10 минут

Читать полностью…

Machinelearning

🤖 Machine Learning Tutorials Repository
Добро пожаловать в репозиторий учебников по машинному обучению. Примеры кода и поянения по:

1.🖥 Python
2.
👁‍🗨 Computer Vision: Techniques, algorithms
3.
🖋 NLP
4.
📊 Matplotlib
5.
🔢 NumPy
6.
🐼 Pandas
7.
🎇 MLOps
8.
🧠 LLMs
9.
🔥 PyTorch/TensorFlow

git clone https://github.com/patchy631/machine-learning

Github

ai_machinelearning_big_data

Читать полностью…

Machinelearning

🔊 Listen, Think, and Understand

AI model that has both audio perception and a reasoning ability.

LTU-AS - модель универсального восприятия звука , которая способна к рассуждению. В частности, благодаря интеграции Whisper в качестве модуля восприятия и LLaMA в качестве модуля рассуждений, LTU-AS может одновременно распознавать и совместно понимать устный текст, паралингвистику, практически все, что можно воспринять из аудиосигналов.

🖥 Github: https://github.com/YuanGongND/ltu

☑️ Demo: https://18c618fc8f07ec494e.gradio.live/

📕 Paper: https://arxiv.org/abs/2309.14405v1

🤗 HH: https://huggingface.co/spaces/yuangongfdu/ltu-2

⭐️ Dataset: https://paperswithcode.com/dataset/iemocap

ai_machinelearning_big_data

Читать полностью…

Machinelearning

VK Data Meetup — митап об инструментах и людях, которые умеют работать с данными

⏰ Когда: 12 октября, 14:00 по Москве
📍 Регистрация

VK Data Meetup — это серия событий о практиках работы с данными на разных уровнях.

Митап 12 октября посвящен работе с большими данными и ML. Обсудим:
• Тренды работы с данными;
• Процессы взаимодействия со смежными подразделениями и внутри дата-команд;
• Новые инструменты, такие как Spark on Kubernetes и No Code AutoML-платформы;
• Кейсы решения практических бизнес-задач от ведущих российских компаний.

Митап будет интересен дата- и ML-инженерам, тимлидам и разработчикам платформ данных, архитекторам и специалистам по Data Science.

Присоединяйтесь к сообществу VK Data Meetup, чтобы узнать про работающие практики и поделиться своим опытом.

Зарегистрироваться

Читать полностью…

Machinelearning

⭐️ Advanced NLP

Advanced NLP from Carnegie Mellon University.
Advanced NLP from MIT.

The course covers current state-of-the-art NLP techniques & algorithms.

Курс: Продвинутый NLP от Университета Карнеги-Меллон.
Курс: Advanced Natural Language Processing от MIT.

Курсы охватывают современные техники и алгоритмы NLP.

Одни из лучших курсов по НЛП в Интернете!

CMU:📌Лекции | Курс
MIT: 📌Лекции | Курс

ai_machinelearning_big_data

Читать полностью…

Machinelearning

🎓 BayesDLL: Bayesian Deep Learning Library

New Bayesian neural network library for PyTorch for large-scale deep network

Новая библиотека байесовских нейронных сетей для PyTorch, предназначенную для работы с крупномасштабными глубокими сетями.

В библиотеке реализованы основные алгоритмы приближенного байесовского вывода: вариационный вывод, MC-dropout, стохастически-градиентный MCMC и аппроксимация Лапласа.

Основные отличия от других существующих библиотек байесовских нейронных сетей заключаются в следующем:

1) библиотека может работать с очень крупными моделями, в том числе с Vision Transformers
2) Практически не требует от пользователей модификации кода .
3)Позволяет использовать предварительно обученные веса модели в качестве средних значений, что полезно для проведения байесовских вычислений в крупномасштабных моделях типа ViTs, которые трудно оптимизировать с нуля на основе одних только исходных данных.

🖥 Github: https://github.com/samsunglabs/bayesdll

📕 Paper: https://arxiv.org/abs/2309.12928v1

⭐️ Dataset: https://paperswithcode.com/dataset/oxford-102-flower

ai_machinelearning_big_data

Читать полностью…

Machinelearning

Ключевой ML-специалист HuggingFace Ahsen Khaliq опубликовал статью о Kandinsky

Khaliq в своем Twitter (X) поделился статьей Kandinsky: an Improved Text-to-Image Synthesis with Image Prior and Latent Diffusion, которая в разделе DailyPapers заняла первое место, обогнав статьи и Deepmind, и Carnegie Mellon.

В статье рассказывается о диффузионной модели Kandinsky для генерации изображений по тексту.

🕊 X: https://twitter.com/_akhaliq/status/1710106706569478573?s=52&t=hSNPltUk1ZT1M605JGLRnA

📕 Paper: https://huggingface.co/papers

@ai_machinelearning_big_data

Читать полностью…

Machinelearning

🤖 GenSim: Generating Robotic Simulation Tasks via Large Language Models

Фреймворк для генерации и моделирования симуляций для роботов с помощью больших языковых моделей.

🖥 Github: https://github.com/liruiw/gensim

✔️ Project: https://liruiw.github.io/gensim

📕 Paper: https://arxiv.org/abs/2310.01361v1

Dataset: https://huggingface.co/datasets/Gen-Sim/Gen-Sim

⭐️ Demos: https://huggingface.co/spaces/Gen-Sim/Gen-Sim

ai_machinelearning_big_data

Читать полностью…

Machinelearning

🦅 Jury: A Comprehensive Evaluation Toolkit

Комплексный набор инструментов для оценки НЛП-экспериментов, предлагающий различные автоматизированные метрики. Jury предлагает удобный и простой в использовании интерфейс.

pip install jury

🖥 Github: https://github.com/obss/jury

📕 Paper: https://arxiv.org/abs/2310.02040v1

🖥 Colab: https://colab.research.google.com/github/obss/jury/blob/main/examples/jury_evaluate.ipynb

⭐️ Demos: https://github.com/Parskatt/DeDoDe/blob/main/demo

ai_machinelearning_big_data

Читать полностью…

Machinelearning

☑️ Efficient Streaming Language Models with Attention Sinks

StreamingLLM, an efficient framework that enables LLMs trained with a finite length attention window to generalize to infinite sequence length without any fine-tuning.

Фреймворк для развертывания больших языковых моделей в потоковых приложениях, таких как многораундовые диалоги, где ожидается длительное взаимодействие, является настоятельной необходимостью, но сопряжено с двумя серьезными проблемами. StreamingLLM позволяет Llama-2, MPT, Falcon и Pythia стабильно и эффективно выполнять моделирование общения с количеством лексем до 4 млн. и более.

🖥 Github: https://github.com/mit-han-lab/streaming-llm

📕 Paper: http://arxiv.org/abs/2309.17453

⭐️ Dataset: https://paperswithcode.com/dataset/pg-19

ai_machinelearning_big_data

Читать полностью…

Machinelearning

Яндекс опубликовал плейлист с докладами конференции Practical ML.

Вот некоторые из них:

— Алексей Морозов, руководитель группы модернизации нейронных сетей Яндекса. Про то, как можно полностью инкапсулировать от ML’щика и исследователя заботу о fault tolerance, распределённой транзакционной записи в storage, асинхронности и минимизации простоев GPU

— Юлий Шамаев, Data Science Team Lead, Банк ВТБ. Про про геоэмбеддинги – векторное представление контекста в пространственной аналитике. Они помогают определить лучшее расположение для банкоматов и банковских отделений.

— Евгений Сидоров, Head of AI, Third Opinion. Про то, как компенсировать недостаток трёхмерной информации на основе множественных проекций при анализе медицинских снимков.

@ai_machinelearning_big_data

Читать полностью…

Machinelearning

Стать сотрудником Яндекса быстрее и проще, чем кажется. Участвуйте в днях быстрого найма: решите тестовое, пройдите несколько секций собеседования и получите офер за несколько дней.

Ближайшее мероприятие:

• 7-8 октября — Fast Track для дата-аналитиков, офер за 2 дня в команду Фудтеха.

Зарегистрироваться

Реклама. ООО "Яндекс". erid:2VtzqwaYy5b

Читать полностью…

Machinelearning

🔊 Diverse and Aligned Audio-to-Video Generation via Text-to-Video Model Adaptation

Модель генерации реалистичных видео из Аудио. Фреймворк способен распознать природу звука и сгенерировать визуальный образ.

git clone git@github.com:guyyariv/TempoTokens.git

🖥 Github: https://github.com/guyyariv/TempoTokens

📕 Paper: https://arxiv.org/abs/2309.16429v1

⭐️ Dataset: https://paperswithcode.com/dataset/audioset

ai_machinelearning_big_data

Читать полностью…

Machinelearning

DreamGaussian: Generative Gaussian Splatting for Efficient 3D Content Creation

A novel 3D content generation framework that achieves both efficiency and quality simultaneously.

DreamGaussian - новый фреймворк для генерации 3D-контента, позволяющий достичь одновременно эффективности и высокого качества генераций.

Работает на безе алгоритма преобразования трехмерных гауссианов в текстурированные сетки с применения файнтюнинга для улучшения деталей. Обширные эксперименты демонстрируют высокую эффективность и конкурентоспособное качество генерации предложенного подхода.


🖥 Github: https://github.com/dreamgaussian/dreamgaussian

☑️ Image-to-3D: https://colab.research.google.com/drive/1sLpYmmLS209-e5eHgcuqdryFRRO6ZhFS?usp=sharing

☑️ Text-to-3d: https://colab.research.google.com/github/camenduru/dreamgaussian-colab/blob/main/dreamgaussian_colab.ipynb

📕 Paper: https://arxiv.org/abs/2309.16653v1

⭐️ Dataset: https://paperswithcode.com/dataset/nerf

ai_machinelearning_big_data

Читать полностью…

Machinelearning

🔎 Text-to-3D using Gaussian Splatting

Новый подход к созданию высококачественных 3D-объектов - генерация текста в трехмерном пространстве на основе гауссова расслоения (GSGEN).

🎇 GSGEN: Text-to-3D using Gaussian Splatting

🖥 Github: https://github.com/gsgen3d/gsgen

☑️ Project: https://gsgen3d.github.io/

📕 Paper: https://arxiv.org/abs/2309.16585v1

⭐️ Dataset: https://paperswithcode.com/dataset/nerf

ai_machinelearning_big_data

Читать полностью…

Machinelearning

✏️ Deep Geometrized Cartoon Line Inbetweening

Method can effectively capture the sparsity and unique structure of line drawings while preserving the details during inbetweening.

Создание промежуточных кадров между двумя рисунками - трудоемкий и дорогостоящий процесс, новый фреймворк AnimeInbet позволяет автоматизировать эту задачу.

AnimeInbet, геометризирует растровые линейные рисунки в графы конечных точек, решая задачу слияния графов с перестановкой вершин.

🖥 Github: https://github.com/lisiyao21/animeinbet

☑️ Demo: https://youtu.be/iUF-LsqFKpI?si=9FViAZUyFdSfZzS5

📕 Paper: https://arxiv.org/pdf/2309.16643v1.pdf

⭐️ Dataset: https://drive.google.com/file/d/1SNRGajIECxNwRp6ZJ0IlY7AEl2mRm2DR/view?usp=sharing

ai_machinelearning_big_data

Читать полностью…

Machinelearning

📚 С помощью Telegram-бота GigaChat можно искать IT-курсы

Сервис Сбера в ответ на запрос о курсах предлагает не только названия ресурсов, где их можно найти, но и ссылки. К примеру, на запрос о поиске курсов по kubernetes нейросеть предложила пять популярных сайтов.

@gigachat_bot также умеет писать тексты и генерировать картинки, создавать инструкции и отвечать на вопросы. Кроме того, бота можно добавлять в групповые чаты и пользоваться совместно.

Попробовать GigaChat можно, перейдя по ссылке.

ai_machinelearning_big_data

Читать полностью…

Machinelearning

fastMONAI: A low-code deep learning library for medical image analysis

Simplifying deep learning for medical imaging.

fastMONAI упрощает использование современных методов глубокого обучения в анализе трехмерных медицинских изображений для решения задач классификации, регрессии и сегментации. fastMONAI предоставляет пользователям функциональные возможности для поэтапной загрузки данных, предварительной обработки, обучения и интерпретации результатов.

git clone https://github.com/MMIV-ML/fastMONAI

🖥 Github: https://github.com/MMIV-ML/fastMONAI

Project: https://fastmonai.no

📕 Paper: https://www.sciencedirect.com/science/article/pii/S2665963823001203

🖥 Colab: https://colab.research.google.com/github/MMIV-ML/fastMONAI/blob/master/nbs/10a_tutorial_classification.ipynb

ai_machinelearning_big_data

Читать полностью…

Machinelearning

⭐️Scenimefy: Learning to Craft Anime Scene via Semi-Supervised Image-to-Image Translation

Фреймворк для автоматической высококачественной генерации аниме-сцен из изображений реального мира.

git clone https://github.com/Yuxinn-J/Scenimefy.git

🖥 Github: https://github.com/Yuxinn-J/Scenimefy/tree/main

☑️ Demo: https://huggingface.co/spaces/YuxinJ/Scenimefy

📕 Paper: https://arxiv.org/abs/2308.12968

Project: https://yuxinn-j.github.io/projects/Scenimefy.html

⭐️ Dataset: https://github.com/Yuxinn-J/Scenimefy/tree/main#open_file_folder-anime-scene-dataset

ai_machinelearning_big_data

Читать полностью…

Machinelearning

Сбер расширяет географию своих ивентов: 6 октября в Тбилиси состоится первый технологический митап, посвящённый разработке рекомендательных систем 👨‍💻

На RecSys MeetUp вы познакомитесь с экспертами Сбера, станете частью одного из крупнейших IT-комьюнити и узнаете о:

✔️ Технологических трендах в области искусственного интеллекта и машинного обучения.

✔️ Устройстве современных стримингов компаний-партнёров Сбера.

Гарантируем: будет интересно и безумно полезно каждому DS-специалисту. Регистрируйтесь по ссылке, встречаемся 6 октября в 18:30 по адресу: Тбилиси, Ресторан на 6 этаже отеля «Golden Palace», переулок Агмашенебели 62 💚

Читать полностью…

Machinelearning

❗️ Как устроены методы коллаборативной фильтрации для рекомендательных систем?

👉 Изучаем SVD алгоритм на открытом уроке 25 сентября в 17:30 мск — «Методы коллаборативной фильтрации для рекомендательных систем: изучаем SVD алгоритм»


🔹 На занятии мы обсудим один из самых мощных алгоритмов области рексис, основанный на сингулярном разложении матрицы (SVD)

📌 Результаты урока:
Вы примените на практике подход на основе SVD разложения матрицы для построения рекомендательной системы

👉 РЕГИСТРАЦИЯ
https://otus.pw/efun/

Реклама. ООО «Отус онлайн-образование», ОГРН 1177746618576, www.otus.ru. Вебинар пройдет в преддверии старта онлайн-курса «Machine Learning. Advanced» от OTUS.

Реклама. ООО "ОТУС ОНЛАЙН-ОБРАЗОВАНИЕ". ИНН 9705100963. erid: LjN8JvLoA

Читать полностью…
Подписаться на канал