ai_machinelearning_big_data | Технологии

Telegram-канал ai_machinelearning_big_data - Machinelearning

27345

Самая актуальная информация из мира ML, Нейронных сетей,DI По всем вопросам- @haarrp @itchannels_telegram - 🔥 best it channels @pythonl - 🐍 @machinee_learning -chat @ArtificialIntelligencedl - AI @datascienceiot - ml 📚 @machinelearning_ru ml

Подписаться на канал

Machinelearning

🧬 Крутой проект от Microsoft: MatterGen - новый ИИ, который создает химические материалы на основе промптов.

В отличие от традиционных методов скрининга, он генерирует новые материалы, используя диффузионную модель, изменяя такие свойства, как химический состав, механическая прочность или магнитные характеристики.

Результат экспериментально подтвержден успешным синтезом материалов.

MatterGen представляет собой переход от традиционных методов проб и ошибок и вычислительного скрининга, напрямую генерируя новые материалы в соответствии с конкретными проектными заданиями, что значительно сокращает время создания и потребность в ресурсах.

→ Модель построена на основе специализированной диффузионной архитектуры и учитывает 3D-геометрию и наличие материалов, используя обучающий набор из более чем 608 000 стабильных соединений из известных баз данных материалов.

→ Модель превосходит традиционный скрининг, особенно в неисследованных материалов, что подтверждается ее способностью генерировать стабильные материалы со специфическими свойствами, выходящими за рамки существующих известных материалов.

→ Экспериментальная проверка подтвердила успешный синтез материала TaCr2O6, в точности совпадающий с предсказаниями модели, продемонстрировав практическую пригодность MatterGen в создании реальных материалов.

→ Выпущенная под лицензией MIT, модель MatterGen вместе с обучающими наборами данных предоставляет исследователям развивать и расширять этот инновационный подход.

📌 Читать

@ai_machinelearning_big_data



#microsoft #tech #MatterGen

Читать полностью…

Machinelearning

🖥 Large Language Model Course

Только что был обновлен популярный бесплатный LLM курс.

Это пошаговое руководство с полезными ресурсами и ноутбуками, как для новичков, так и для тех, кто уже обладает мл-базой

Курс разбит на 3 части:
1️⃣LLM Fundamentals: Блок дает фундаментальные знания по математике, Python и нейронным сетям.
2️⃣ LLM Scientist: В этом блоке упор сделан на внутреннем устройстве LLM и их создание с использованием новейших технологий и фреймворков.
3️⃣ The LLM Engineer: Здесь вы научитесь писать приложений на практике и научитесь развертывать их.

⭐️ 41.4k звезд на Github

📌 Курс

#llm #course #opensource #ml

Читать полностью…

Machinelearning

🧠 ML DIGEST

💬Выпущена Новая TTS модель OuteTTS 0.3, 1 B и 500M

> Zero-shot - клонирование голоса > Многоязычный (en, jp, ko, zh, fr, de)
> Обучен 20 000 часам аудиозаписей
> Работает от OLMo-1B и Qwen 2.5 0.5B
> > Функции контроль скорости речь и эмоций
HF


🤗 Hugging Face выпустили открытый курс по изучению AI-агентов на практике.

За прохождение курса можно получить сертификат и самое главное, что при обучении упор идет на практику.
Вы погрузитесь в популярные фреймворки агентов, такие как LangChain, LlamaIndex и smolagents. Эти инструменты предоставляют строительные блоки для создания сложных поведений агентов.
Записаться можно здесь


🎥 Компания Luma AI только что выпустила #Ray2 - новую модель видео с искусственным интеллектом, которая создает реалистичные видеоролики с естественным и последовательным движением. Поддерживает text-to-video и image-to video. Доступна платно.
Подробнее


🎓 Transformer2: Self-adaptive LLMs

SakanaAi представили новую структуру самоадаптации моделей, при которой LLM адаптируется для невидимых задач в реальном времени, выборочно корректируя только отдельные компоненты своих весовых матриц.

Во время вывода используется система диспетчеризации, которая определяет свойства задачи, а затем использует векторы «экспертов» для конкретной задачи, обученные с помощью reinforcement learning👀
Статья
GitHub


🧞Omni-RGPT: очередная SOTA MLLM
NVIDIA представляли Omni-RGPT, MLLM, для понимания изображений и видео на уровне отдельных объектов и регионов на видео.
Статья
Проект


⚡️ Bespoke Curator
Curator - библиотека с открытым исходным кодом, разработанная для упрощения создания синтетических данных!
Github


🌏 Earth View предлагает огромную коллекцию мультиспектральных изображений
Земли из нескольких спутниковых источников, включая Satellogic, Sentinel-1, NEON и предстоящий Sentinel-2.
HF

@ai_machinelearning_big_data


#ml #news #digest #machinelearning

Читать полностью…

Machinelearning

erid: 2W5zFGMWVua

Приглашаем вас на открытый вебинар: «Как увеличить число обнаружений YOLO?» OTUS.RU

⏰Дата: 20 января в 20:00 мск
Спикер: Дмитрий Колесников

📚На вебинаре вы узнаете на практике:
+Необходимые нюансы с библиотекой по работе с YOLO моделями
+Как увеличивать чисто детекций и инстанс сегментаций с использованием  патчевых подходов инференса
+Что нужно для запуска на видеопотоке нейронной сети в базовом и патчевом  режиме
+Теорию патчевых методов обработки

🚀В результате вебинара вы научитесь:
-Работать с нейронной сетю на изображениях и видео в базовом и патчевом подходе
-Автопатчингу и сможете его применить для увеличения числа детекций
*а также познакомитесь с библиотекой patched_yolo_infer

Участники вебинара получат скидку🎁 на курс «Компьютерное зрение»

👉Регистрируйтесь по ссылке: OTUS.RU
Реклама. ООО «Отус онлайн-образование», ОГРН 1177746618576

#реклама
О рекламодателе

Читать полностью…

Machinelearning

📄 ML NEWS

🤖 Microsoft Research только что опубликовали новую версию AutoGen - суперпопулярного фреймворка для работы с агентами с открытым исходным кодом

AutoGen v0.4 это переработанный фреймворк, в котором значительно улучшена масштабируемость, добавлена модульность и новая система отладки процессов agentic AI за счет внедрения асинхронной архитектуры, управляемой событиями.
Github

🖥 Google представил архитектуру Titans, которая возможно станет очень важным элементом развития больших языковых моделей (LLM) в 2025 году.

Архитектура состоит из 3х типов памяти:
- Краткосрочная память – для оперативной обработки данных.
- Долгосрочная память – для всей сохранения значимой информации.
- Постоянная память – для фиксации важной информации.
По заявлениям разработчиков Titans может эффективно обрабатывать контекст превышающим 2 миллионов токенов.
Подробнее

🖥 ChatGPT теперь таск-менеджер:
ИИ теперь способен инициировать диалог благодаря новой функции Tasks. Ранее он только отвечал на запросы, а теперь способен самостоятельно выполнять задачи.

Tasks позволяют пользователям давать ChatGPT задачи с указанием времени выполнения.
▪Подробнее

📱 DeepSeek V3 вышел на айфонах
Приложение доступно AppStore бесплатно и работает очень быстро
▪Скачать можно здесь.

⚡️ Выпущена новая открытая модель Omni!
MiniCPM-o 2.6 - мультимодальная модель с 8B параметрами, работающая на edge девайсах.
- 8B параметров (SigLip-400M + Whisper-300M + ChatTTS-200M + Qwen2.5-7B)
- Превосходит GPT-4V в vision задачах с 70. 2 баллами на OpenCompass
- Лучшие в своем классе возможности двуязычной речи с разговором в реальном времени и клонированием голоса
Model

👩‍💻 Stable point-aware 3D от Stability AI

Свежий инструмент с открытым исходным кодом, который отлично справляется с созданием 3D объектов по одному изображению.
▪Github

@ai_machinelearning_big_data


#news #ml #digest #Stability #chatgpt #google #microsoft #deepSeek #MiniCPM

Читать полностью…

Machinelearning

🔥 Mistral выпустила новую модель, специально разработанную для по Кодина с ИИ.

Codestral 25.01 дебютирует на 1-м месте в рейтинге лидеров LMsys Copilot Arena 🔥

Новая версия стала заметно умнее и в разы быстрее благодаря обновлённому токенизатору и усовершенствованной архитектуре.
Вы уже можете использовать его бесплатно в Continue (100% открытый исходный код) для VS Code.

Размер окна контекста увеличен до 256 тысяч токенов.

Чтобы использовать его, просто добавьте плагин Continue в VS Code и выберите Codestral 25.01 в качестве модели.

А если вам нужна дополнительная информация, то вот официальный блог Mistral.

https://mistral.ai/news/codestral-2501/

@ai_machinelearning_big_data

#mistral #llm #ml #Codestral

Читать полностью…

Machinelearning

🧠 Helium 1 preview 2b

Kyutai labs выпустили Helium-1 Preview, 2B многоязычный LLM для edge девайсов и мобильных устройств.

Модель, обучена на 2,5 Т токенов и превосходит Qwen 2.5 1.5B🔥

> Превосходит/сопоставим с Owen 1.5B, Gemma 2B и Llama 3B
> обучен на 2.5T токенов с размером контекста 4096
> использует дистилляцию на уровне 7B модели
> разработчики планируют добавить больше языков, выпустить полную версию
> открытый код

🤗 HF: https://huggingface.co/kyutai/helium-1-preview-2b

@ai_machinelearning_big_data


#Helium #llm #ml

Читать полностью…

Machinelearning

🔥 Sky-T1-32B-Preview 32B - 450$ - это все, что вам нужно, чтобы обучить свою собственную O1 🌟

Модель достигает конкурентоспособных результатов в рассуждениях и кодинге, 82.4 в Math500, 86.3 в LiveCode-East по сравнению с QwQ (85.4, 90.7) и o1-preview (81.4, 92.9) 🎓

Это новая O1 - подобная модель с открытым исходным кодом, обученная за < 450$, полностью открытый исходный код, 17K обучающих данных, , модель превосходит Qwen-2.5-32B-Instruct по всем бенчмаркам 💥

🤗HF: https://huggingface.co/NovaSky-AI/Sky-T1-32B-Preview

@ai_machinelearning_big_data


#llm #ml

Читать полностью…

Machinelearning

Google Research выпустили новую версию TimesFM-2.0 (jax + pytorch)

Это предварительно обученная модель для прогнозирования временных рядов .

Новая версия работает в показывает улучшение производительности на 25 %, чем v1.0 на различных бенчмарках, при этом имеет в 4 раза большую максимальную длину контекста.

TimesFM-2.0 возглавляет таблицу лидеров GIFT-Eval в метриках вероятностного прогнозирования.

Hf
Paper
Google Research blog
GitHub

@ai_machinelearning_big_data

#google #Timeseriesforecasting #timesFM #прогнозированиевременныхрядов

Читать полностью…

Machinelearning

💻 ACU - Awesome Agents for Computer Use

Проект, который содержит тщательно отобранный перечень ресурсов о ИИ-агентах, предназначенных для автономной работы на ваших компьютерах.

В него включены научные исследования, проекты, фреймворки, гайды и различные инструменты.

Агенты поддерживают функции анализа задач и принятия решений для взаимодействия с любыми интерфейсам.

Github

@ai_machinelearning_big_data


#aiagents #awesome #agents

Читать полностью…

Machinelearning

📲 Diffusion Explainer - визуализация, которая поможет понять работу моделей, основанных на диффузии:

⭐️Визуал, который будет понятен каждому
⭐️Работает в браузере
⭐️Отличное наглядное объяснение того, как модели диффузии генерируют изображения.

https://poloclub.github.io/diffusion-explainer

Diffusion explainer
Github
Статья
Видео

@ai_machinelearning_big_data


#diffusion #tutorial #ml

Читать полностью…

Machinelearning

Microsoft на высоте!

rStar-Math SoTA для решения математических задач с точностью 90,0% (по сравнению с 58,8% Qwen2.5-Math-7B) и 86,4% (по сравнению с 41,4% Phi3-mini-3.8B), 🔥

превосходя o1-preview на 4,5% и 0,9%, решает 53,3% задач математической олимпиады США, попадая в 20% лучших математиков старшей школы

Код будет опубликован в ближайшее время! 🤗

https://huggingface.co/papers/2501.04519с

@ai_machinelearning_big_data

#microsoft #llm

Читать полностью…

Machinelearning

🖥 NVIDIA представила видеокарты серии RTX 50 — всего четыре модели.

RTX 5090 оказалась в 1,5 раза производительнее предыдущей версии RTX 4090! Более того, благодаря технологии DLSS 4, даже самая доступная модель RTX 5070 за $550 способна обеспечить производительность на уровне RTX 4090.

Мы все ожидали от RTX 5090, крутые характеристики и все такое. Но все ли поняли, что Дженсен сказал о графике?

Что новая карта использует нейронные сети для генерации 90+% пикселей в играх?

Традиционные алгоритмы трассировки лучей отрисовывают только ~10%, своего рода «скетч», а затем генеративная модель заполняет остальные мелкие детали. За один проход в режиме реального времени.

ИИ - это новый уровень графики, дамы и господа.

Цены и технические характеристики:

GeForce RTX 5090:
- Процессор: GB202-300
- CUDA-ядер: 21 760
- Память: 32 ГБ GDDR7 (1792 Гбайт/с)
- Шина: 512 бит
- Потребление энергии: 575 Вт
- Цена: $1999

GeForce RTX 5080:
- Процессор: GB203-400
- CUDA-ядер: 10 752
- Память: 16 ГБ GDDR7 (960 Гбайт/с)
- Шина: 256 бит
- Потребление энергии: 360 Вт
- Цена: $999

GeForce RTX 5070 Ti:
- Процессор: GB203-300
- CUDA-ядер: 8 960
- Память: 16 ГБ GDDR7 (896 Гбайт/с)
- Шина: 256 бит
- Потребление энергии: 300 Вт
- Цена: $749

GeForce RTX 5070:
- Процессор: GB205-300
- CUDA-ядер: 6 144
- Память: 12 ГБ GDDR7 (672 Гбайт/с)
- Шина: 192 бит
- Потребление энергии: 250 Вт
- Цена: $549

Продажи стартуют уже в этом месяце!

@ai_machinelearning_big_data

#nvidia

Читать полностью…

Machinelearning

🖥 Magnetron

Этот проект был создан, с целью изучения понимания внутренней работы PyTorch и других популярных фреймворков глубокого обучения.

Главная цель проекта - создание с нуля минималистичного, но при этом мощного фреймворк глубокого обучения, который можно использовать как для исследований, так и для продакшена.

Фреймворк написан на C и Python и спроектирован так, чтобы его было легко понять и модифицировать.

Знаменитая цитат Ричарда Фейнмена - То, что я не могу создать, я не понимаю.

Создание собственного языка программирования, игрового движка и конечно фреймворка машинного обучения позволит понять, как работает современное программное обеспечение, до мельчайших деталей.

◾️GitHub
◾️Demo
◾️Docs

@ai_machinelearning_big_data

#c99 #python #framework

Читать полностью…

Machinelearning

🌟 noise_step: алгоритм тернарного обучения без использования градиентной памяти.


Noise_step - экспериментальный концепт аглоритма, который позволяет обучать модели, оперируя 1,58-битной (тернарной) точностью, что снижает потребление электроэнергии и сокращает вычислительные затраты.

Noise_step обходится без обратного распространения ошибки, а также может работать параллельно с инференсом и хранит тернарные значения в бинарном представление, которое позволяет упаковать 5 тернов в 1байт.

Алгоритм оценивает градиент, используя произведение Якобиана на вектор возмущения, которые генерируются с помощью распределения Бернулли и равномерного распределения {-1, +1}. Для оценки градиента нужен только знак выравнивания, а не его величина. Чтобы улучшить сходимость, Noise_step отбрасывает возмущения со слишком маленькой величиной выравнивания.

Векторы возмущений не надо хранить в памяти, поскольку они генерируются из начального сида. Это значит, что размер модели больше не зависит от количества параметров, а зависит от произведения шагов и возмущений.

Таким образом, модель можно представить как последовательность шагов, что кардинально уменьшает её размер. Теоретически, основываясь на расчетах, размер модели, подобной GPT-3 175B, можно уменьшить до 19MB.

Noise_step использует дискретные шаги из-за тернарного пространства, что добавляет шума в кривую обучения, но алгоритм сходится примерно как Adam, хотя и требует большего батч-сайза. Сходимость, аналогичная Adam, была подтверждена эмпирически на единственном прикладном эксперименте с простым MLP на наборе MINST и, очевидно, требует большей вариативности практических тестов.

Несмотря на то, что ранее тернарная точность уже была реализована в фреймворке Microsoft и модели Nous Research, которые не имеют таких ограничений, как в Noise_step , он может стать в будущем альтернативой квантованию и встать в один ряд с другими методами оптимизации обучения и инференса.

⚠️ Обучение трансформерных моделей с noise_step пока остается отрытым вопросом, так как для этого необходимо написать ядро, в котором шум будет виртуализирован (генерироваться по мере использования).

⚠️ Для больших моделей с большим количеством шагов реконструкция становится непрактичной, поскольку каждый вес должен обновляться с учетом каждого вектора возмущений на каждом шаге. Полная реконструкция тернарной модели с количеством параметров 175B, потребовала бы примерно 10 в 19 степени операций.


🟡Исследование
🟡Google Collab простого MLP c MINST
🖥GitHub

@ai_machinelearning_big_data

#AI #ML #NoiceStep #TernaryPresision

Читать полностью…

Machinelearning

Аналитик данных — одна из перспективных и высокооплачиваемых профессий в IT-сфере. Медианная зарплата специалиста составляет 100 000 рублей. А спрос на аналитиков непрерывно растёт, ведь компании накапливают всё больше информации, которую нужно структурировать, обрабатывать и анализировать для взвешенных бизнес-решений.

Освоить базовые инструменты для быстрого старта на позиции junior-аналитика поможет курс «Аналитик данных».

За 6 месяцев обучения вы:

Изучите SQL, Python, Power BI для работы с большими данными.
Научитесь применять статистические методы и проверять гипотезы.
Создадите 4 полноценных проекта для портфолио.
Выполните более 20 комплексных практических заданий.
Весь учебный процесс построен на практике под руководством опытных наставников из ведущих IT-компаний. Уже в процессе обучения вы разберёте тестовые задания от Сбера, Яндекса, Т-Банка и начнёте искать работу.

Начните свой путь в сферу анализа данных — регистрируйтесь на курс. От нас — актуальные знания, навыки и поддержка на всех этапах вашего обучения

Реклама. ООО "Нетология". ИНН 7726464125 Erid 2VSb5ybTZwN

Читать полностью…

Machinelearning

🎄 Встречаемся на Data Ёлке в московском офисе VK!

18 января сообщество Open Data Science совместно с VK проведёт DS-конференцию по итогам 2024 года. Будут доклады о рексистемах, LLM, NLP и разным направлениям ML. А ещё — обсуждение карьерного стрима в DS и разбор лучших решений от участников VK RecSys Challenge.

За новогодние костюмы и лучшие вопросы из зала — призы! 🥳 Любители нетворкинга смогут неформально пообщаться на афтепати.

🗓 18 января, 12:00 (сбор гостей с 11:00).
🖥 Онлайн в VK Видео — смотрите трансляцию в сообществе VK Team ВКонтакте.
📍 Москва, БЦ Skylight — Ленинградский проспект, 39, строение 79. На входе надо будет показать подтверждение участия и паспорт. Приглашение придёт на email после регистрации.

Читать полностью…

Machinelearning

🌟Вышла новая InternLM v3!

Internal выпустила 3 версию своей маленькой модели и утверждают, что на данный момент это лучшая модель класса 7B.

Интересно, что она “обучена всего на 4 триллионах высококачественных токенов” и имеет режим анализа, включенный с помощью системного проспать. 4

- Производительность уровня SoTA, превосходит на бенчмарках Llama3.1-8B и Qwen2.5-7B
- Способность к глубоким рассуждениям с использованием системных промптов (подробности в карточке модели)
- Обучалась только на токенах высокого качества 4T.

📌 Лицензия: Apache 2.0.

🤗 HF: https://huggingface.co/collections/internlm/internlm3-67875827c377690c01a9131d

@ai_machinelearning_big_data

#InternLM #opensource #llm #ml #reasoningmodel

Читать полностью…

Machinelearning

⚡️Вуз со STEM-подходом к обучению стал одним из лучших по качеству набора студентов

Эксперты НИУ ВШЭ провели мониторинг более 800 вузов страны. В исследовании сравнивали средний балл ЕГЭ зачисленных на программы бакалавриата и специалитета в 2024 году.

Центральный университет замкнул тройку лидеров в категории платного набора, уступив лишь МФТИ и Университету Иннополис. Средний балл платников вуза составил 84,4.

В категории общего набора университет занял восьмое место с результатом 84,7 баллов, опередив МГУ имени М.В. Ломоносова.

В вузе отметили, что в рамках приема учитывают не только результаты ЕГЭ, но и другие достижения абитуриента. Успешно проявившим себя на конкурсах и олимпиадах Центрального университета выдаются гранты, покрывающие до 100% стоимости обучения, а студентам вуза предоставляет платные стажировки в ведущих компаниях страны.

▪️Читать

@ai_machinelearning_big_data

#news #ai #ml

Читать полностью…

Machinelearning

🔥 Вышла новая модель MiniMax-01 456B с открытым исходным кодом с контекстом 4M !

🚀 Функции MiniMax-Text-01 и MiniMax-VL-01 основаны на ультрасовременной архитектуре "Lightning Attention".

→ В MiniMax-Text-01 реализован гибридный подход, при котором в 7 из каждых 8 слоев используется Lightning Attention, а в одном - SoftMax для улучшения баланса модель.

Такая архитектура позволяет эффективно обрабатывать сверхдлинные последовательности.

→ Версия с открытым исходным кодом включает в себя полный набор весов и API. По цене примерно 0,2 доллара за миллион входных токенов и 1,1 доллара за миллион выходных токенов — вполне конкурентоспособные цены.

На тестах модель превосходит платный Deep Seek v3 ! 💥

→ В задачах с длинным контекстом MiniMax-Text-01 достиг 100% точности в тесте поиска "Needle-in-a-Haystack" с использованием 4 миллионов токенов, превосходя топовые модели в реальных задачах с использованием искусственного интеллекта.

🖥 Github: https://github.com/MiniMax-AI/MiniMax-01
📑Paper:https://filecdn.minimax.chat/_Arxiv_MiniMax_01_Report.pdf
📖Read more: https://minimaxi.com/en/news/minimax-01-series-2

@ai_machinelearning_big_data

#llm #MiniMax #ai #agents #ml #opensource

Читать полностью…

Machinelearning

Приглашаем вас на открытый вебинар: «Технологии за современными LLM»
https://otus.pw/FpRA/

⏰Дата: 20 января в 18:00 мск
Спикер: Мария Тихонова

📚На занятии мы обсудим:
+ Какие современные LLM сегодня используют на практике.
+ Основные концепции языкового моделирования и продвинутые языковые модели.
+ Методы и технологии, благодаря которым создатели ChatGPT совершили прорыв.
+ Что представляет из себя задача языкового моделирования
+ Языковые модели, которые сегодня лежат в основе всех NLP методов

🔥Результаты урока:
- Вы поймете, где применяются методы NLP
- Узнаете основные тренды и перспективы развития методов NLP
- Узнаете современное состояние области в связи с быстрым развитием LLM

Участники открытых уроков получат скидку🎁 на онлайн-курс «NLP / Natural Language Processing»

👉Регистрируйтесь на открытый вебинар по ссылке: https://otus.pw/FpRA/?erid=2W5zFHFJMap
Реклама. ООО «Отус онлайн-образование», ОГРН 1177746618576

#реклама
О рекламодателе

Читать полностью…

Machinelearning

💰 Stretching Each Dollar: Diffusion Training from Scratch on a Micro-Budget

Вышел официальный код и чекпоинты для MicroDiffusion от Sony.

Советую прочитать статью, в ней авторы подробно рассказывают о том, как они обучили модель уровня SD1 (MicroDiT) за $1890, используя диффузионный трансформер с MoE и наборы реальных+синтетических данных на 37M.

Теперь любой желающий может обучить модель Stable Diffusion v1/v2-уровня с нуля всего за 2,5 дня, используя 8 графических процессоров H100 (стоимостью < $2000)

Здесь можно посмотреть конфигурацию обучения для каждого этапа.

Paper: https://arxiv.org/abs/2407.15811v1
Github: https://github.com/SonyResearch/micro_diffusion
HF: https://huggingface.co/VSehwag24/MicroDiT
Dataset: https://github.com/SonyResearch/micro_diffusion/blob/main/micro_diffusion/datasets/README.md

@ai_machinelearning_big_data


#stablediffusion #guide #sd #ml #sony

Читать полностью…

Machinelearning

🧠 Огромный гайд по по обучению с подкреплением

Свежее руководство по обучению с подкреплением, которое очень подробно объясняет всю теорию и детали реализации каждого алгоритма в этой области со множеством примеров и кодом.

Наслаждайтесь чтением)

📌 Читать

@ai_machinelearning_big_data


#ml #reinforcementlearning #rl #guiede

Читать полностью…

Machinelearning

🦑 SQL Squid Game: 9 уровней. 1 работа Дата Сайентиста. Ваша жизнь на кону 🔫.

Развлечение на выходные - Игра в Кальмара с SQL. Это бесплатный образовательный тренажер по работе с БД, по мотивам Netflix's Squid Game, SQL Murder Mystery и других известных SQL-игр.

О чем игра?
Вы только что были приняты на работу в качестве Дата Сайентиста в загадочную организацию Squid Game.

Таинственный работодатель, управляющий игрой, пообещал вам полностью удаленную работу, на которой вы будете составлять промпты, работать с pandas и генеративным ИИ

Но, как это обычно бывает в индустрии данных, вас подставили и обманули.

Оказалось, что работа связана с аналитикой данных на SQL, а работа не полностью удаленная, а гибридная: 5 дней в офисе, а 2 дня удаленно.

Не успели вы отказаться от работы , как работодатель приставил к вашей голове пистолет и начал требовать ответов на различные бизнес-вопросы.

Вы должны написать SQL-запросы, чтобы ответить ему - иначе вас ждет печальный конец 💀

📌 Как играть

- На каждом уровне вам будут даны задачи, а также одна или несколько таблиц и их схема.

Вам будет дана ячейка решения, в которую вы должны будете записать свое решение и отправить его на проверку.

Каждый уровень становится сложнее.

PS: Для прохождения SQL Squid Games, вам нужно хорошо знать SQL.А если хотите освежить свои знания или выучить SQL с нуля, вот 33 интерактивных уроков от Datalemur.

📲 Начать игру

@ai_machinelearning_big_data


#sql #tutorial #educationalgame

Читать полностью…

Machinelearning

🔹 Изучаем основные инструменты оценки мулитиколлинеарности признаков на открытом уроке «Корреляция признаков. PCA»

Рассмотрим вопросы оценки корреляции и муликоллинеарности признаков в задачах предиктивной аналитики временных рядов, а также обобщения информативных признаков для поставленной задачи.

✅ Практика: применение метода анализа главных компонентов для понижения размерности при решении задач прогнозирования временных рядов

Оставляйте заявку на курс «ML для финансового анализа» и создайте торгового робота для автоматического проведения операций с оценкой уровня риска

👉 Регистрация на урок и подробности:
https://clck.ru/3FeGq8?erid=2W5zFGDWJNt

#реклама
О рекламодателе

Читать полностью…

Machinelearning

⚡️🔥 Недавно Google Cloud выпустил «Руководство разработчика PyTorch по основам JAX».

Jax – это фреймворк для машинного обучения, подобный PyTorch и TensorFlow.

Его разработали в Deepmind, хотя он не является официальным продуктом Google, он остается популярным.

Jax объединяет Autograd и XLA (Accelerated Linear Algebra - компилятор с открытым исходным кодом для машинного обучения) для обеспечения высокопроизводительных численных вычислений.

Созданный на основе NumPy, его синтаксис следует той же структуре, что делает его простым выбором для разработчиков.

В этом руководстве содержится пошаговый гайд по реализации простой нейтронной сети на Pytorch (JAX + Flax NNX) для тех, кто хочет начать работать с JAX.

📌 Читать
📌Документация Jax

@ai_machinelearning_big_data


#jax #pytorch #google

Читать полностью…

Machinelearning

🔥 Microsoft только что выпустила Phi-4 LLM, обученный на 9,4 триллионах токенов.

Лицензия MIT!

🤗 HF: https://huggingface.co/microsoft/phi-4

🧠Demo: https://huggingface.co/spaces/Tonic/Phi-4

@ai_machinelearning_big_data

#phi4 #llm #Microsoft

Читать полностью…

Machinelearning

🖥 nv-ingest - NVIDIA Ingest

NVIDIA-Ingest - это масштабируемый, ориентированный на высокую производительность микросервис для парсинга неструктурированных документов и метаданных очень большого размера.

Инструмент поддерживает PDF, Word и PowerPoint и использует специализированные микросервисы NVIDIA NIM для поиска, контекстуализации и извлечения текста, таблиц, диаграмм и изображений для использования в генеративных приложениях.

NVIDIA Ingest позволяет распараллелить процесс разбиения документов на страницы, где содержимое классифицируется (как таблицы, диаграммы, изображения, текст), извлекается в дискретный контент и далее контекстуализируется с помощью оптического распознавания символов (OCR) в четко определенную схему JSON.

После этого NVIDIA Ingest может опционально вычислением эмбедингов для извлеченного контента, а также опционально храненииь данные в векторной базе данных Milvus.

📌GitHub
📌Документация

@ai_machinelearning_big_data

#NVIDIA #parsing #embedding

Читать полностью…

Machinelearning

🌟 VSI-Bench: бенчмарк для оценки визуально-пространственного восприятия MMLM.

VSI-Bench - видео-бенчмарк из 5130 пар "вопрос-ответ" основанных на 288 видеозаписях реальных сцен. Видеоматериалы были собраны из публичных датасетов ScanNet, ScanNet++ и ARKitScenes и содержат типы пространств: жилые помещения, офисы и производственные объекты.

Бенчмарк структурирован в виде 8 задач, классифицированных по трем категориям: конфигурационные, измерительные и пространственно-временные:

🟢Конфигурационные задачи определяют количество объектов, измеряют относительные расстояния и направления и планируют маршруты.

🟢Измерительные - определяют размеры объектов, помещений и абсолютные расстояния.

🟢Пространственно-временные задачи выполняют оценку способности тестируемой MMLM к запоминанию последовательности появления объектов в видео.

▶️Структура датасета:

🟠idx - номер записи в датасете;
🟠dataset - источник видео (датасет): scannet, arkitscenes or scannetpp;
🟠scene_name - название видео;
🟠question_type - тип вопроса;
🟠question - вопрос;
🟠options - варианты ответа на вопрос, если возможен множественный выбор;
🟠ground_truth - правильный ответ на вопрос.

Возможности VSI-Bench оценивались с 15 MLLM, поддерживающих видеоформат: Gemini-1.5, GPT-4o, InternVL2, ViLA, LongViLA, LongVA, LLaVA-OneVision и LLaVA-NeXT-Video.

Оценка проводилась в режиме zero-shot с применением стандартных запросов для каждой модели. В качестве метрик для задач с множественным выбором использовалась Accuracy (ACC), а для задач с числовыми ответами — Mean Relative Accuracy (MRA).

Результаты оценки показали, что, несмотря на достижение значительных результатов топовыми моделями, их производительность все еще уступает человеческой. Люди демонстрируют среднюю точность в 79%, в то время как MLLM с высшим результатом (Gemini-1.5 Pro) показывают более низкие показатели (48.8%).

Использование стандартных лингвистических техник: chain-of-thought, self-consistency и tree-of-thoughts не привели к улучшению результатов. Анализ ошибок выявил, что основная проблема для моделей - пространственное рассуждение, а не визуальное восприятие, NLP-навыки или обработка временных данных.

▶️Локальная установка и запуск evaluation скрипта для нескольких моделей:

# Create conda env
conda create --name vsibench python=3.10
conda activate vsibench

# Clone repo
git clone git@github.com:vision-x-nyu/thinking-in-space.git
cd thinking-in-space

# Update submodules
git submodule update --init --recursive

# Install requirements
cd transformers && pip install -e . && cd ..
pip install -e .
pip install s2wrapper@git+https://github.com/bfshi/scaling_on_scales
pip install deepspeed

# Run all-in-one evaluation script
bash evaluate_all_in_one.sh --model all --num_processes 8 --benchmark vsibench


📌Лицензирование: Apache 2.0 License.


🟡Страница проекта
🟡Датасет
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #MMLM #Benchmark #VSIBench

Читать полностью…

Machinelearning

✔️ Глава Google заявил о необходимости ускорить разработку ИИ, чтобы конкурировать с ChatGPT.

На стратегической встречи с сотрудниками компании Google, генеральный директор Сундар Пичаи отметил, что приоритетным направлением в следующем году станет масштабирование модели Gemini на потребительском рынке. Существует обеспокоенность, что продукт ChatGPT от компании OpenAI приобретает статус синонима ИИ, аналогично тому, как Google стал синонимом поисковых технологий.
searchengineland.com

✔️ Тенденции в области ИИ в 2025 году по версии Стэнфордского института.

Эксперты Стэнфордского института человеко-ориентированного ИИ (HAI) прогнозируют, что в 2025 году произойдет значительный сдвиг в сторону коллаборативных систем ИИ, где несколько специализированных агентов будут работать вместе, под управлением человека. Эксперты также отмечают замедление темпов улучшения крупных моделей и усиление скептицизма относительно их реальных преимуществ.

Ожидается увеличение количества мошенничеств с использованием генеративного ИИ. В США, вероятно, будет ослаблено регулирование в ИИ, при этом другие игроки - ЕС и отдельные штаты будут устанавливать собственные правила. Будут развиваться системы, где разные LLM с узкой специализацией будут взаимодействовать друг с другом для решения задач, при этом ведущую роль будет играть “генеральный подрядчик” LLM.
hai.stanford.edu

✔️ Nvidia переориентирует свою деятельность на робототехнику на фоне усиления конкуренции на рынке ИИ-чипов.

В первой половине 2025 г. компания планирует выпустить компактные компьютеры Jetson Thor, предназначенные для человекоподобных роботов. Nvidia стремится занять лидирующие позиции на рынке робототехники, полагая, что данный сегмент находится на пороге значительного роста. Компания ожидает усиления конкурентного давления со стороны AMD, Google и Amazon.

На текущий момент доходы от робототехники составляют относительно небольшую долю в общем объеме доходов Nvidia, где 88% приходится на доходы от центров обработки данных, составившие 35,1 миллиарда долларов в третьем квартале 2024.
pymnts.com

✔️ AgiBot World: Открытый набор данных для обучения роботов от Zhiyuan Robotics.

Zhiyuan Robotics опубликовала AgiBot World, большой набор данных, предназначенный для содействия развитию воплощенного интеллекта. Набор включает в себя более 80 различных навыков, охватывающих пять основных сфер применения: бытовые условия, общественное питание и промышленное производство. Датает создан на основе производственной и экспериментальной базы компании, площадь которой составляет более 4000 квадратных метров, с использованием 8 камер и манипуляторов с 6 степенями свободы.

AgiBot World содержит более 3000 реальных объектов, воспроизводящих условия, приближенные к реальным производственным и бытовым ситуациям. В набор данных входят как элементарные действия (захват и перемещение предметов) и более сложные операции (перемешивание, складывание и глажка). Zhiyuan Robotics планирует постепенное открытие доступа к десяткам миллионов единиц данных моделирования и выпуск базовой модели с полным комплексом инструментов для обучения, сбора и анализа данных.
agibot-world.com

✔️ Британские ученые предупреждают о манипуляциях с решениями пользователей в интернете с помощью ИИ.

В работе Кембриджского университета исследуется формирование новой "экономики намерений", основанной на анализе, прогнозировании и манипулировании намерениями людей с помощью ИИ-ассистентов, с последующей продажей данной информации заинтересованным компаниям. Данная модель позиционируется как преемник "экономики внимания", где социальные сети стремятся удерживать внимание пользователей с целью демонстрации рекламы.

В новой парадигме ИИ-компании будут продавать информацию о мотивациях пользователей, их планы и политические взгляды, заинтересованным сторонам. Согласно исследованию, LLM могут быть использованы для "предвосхищения и управления" поведением пользователей, основываясь на поведенческом анализе.
theguardian.com

@ai_machinelearning_big_data

#news #ai #ml

Читать полностью…
Подписаться на канал