ai_machinelearning_big_data | Технологии

Telegram-канал ai_machinelearning_big_data - Machinelearning

27345

Самая актуальная информация из мира ML, Нейронных сетей,DI По всем вопросам- @haarrp @itchannels_telegram - 🔥 best it channels @pythonl - 🐍 @machinee_learning -chat @ArtificialIntelligencedl - AI @datascienceiot - ml 📚 @machinelearning_ru ml

Подписаться на канал

Machinelearning

🌟 Mamba — семейство SSM-моделей

Селективные модели пространства состояний (SSM), такие как Mamba, не имеют некоторых недостатков трансформеров, таких как квадратичная вычислительная сложность при увеличении длины последовательности и большие требования к памяти. Более того, недавние исследования показали, что SSM могут соответствовать или превосходить возможности трансформеров, что делает их интересной альтернативой.

Однако до сих пор проводились лишь небольшие эксперименты по сравнению SSM с трансформерами.
Это исследование призвано исправить ситуацию, здесь проводится прямое сравнение 8B моделей Mamba, Mamba-2 и трансформера, обученных на одних и тех же наборах данных объемом до 3.5Т лексем. Также эти модели сравниваются с гибридной моделью (Mamba-2-Hybrid), состоящей из 43% слоев Mamba-2, 7% слоев Attention и 50% слоев MLP.

🤗 Mamba-2 и другие модели на Hugging Face
🟡 Arxiv

@ai_machinelearning_big_data

Читать полностью…

Machinelearning

⚡️ VideoLLaMA 2 — набор open-source Video-LLM, предназначенных для генерации видео

git clone https://github.com/DAMO-NLP-SG/VideoLLaMA2
cd VideoLLaMA2
pip install -r requirements.txt
pip install flash-attn --no-build-isolation


VideoLLaMA 2 — логическое развитие прошлых моделей, включает в себя специализированный компонент пространственно-временной свертки (STC), который эффективно улавливает сложную динамику на видео.

🖥 GitHub
🤗 Демо на HF
🤗 Модель VideoLLaMA 2 на HF

@ai_machinelearning_big_data

Читать полностью…

Machinelearning

⚡️ Nemotron 4 340B!

Nvidia только что выпустила LLM размером 340B , модель близкую
к производительности OpenAI GPT-4 🤯 NVIDIA не претендует на право собственности на какие-либо сгенерированные выходные данные. 💚

🧮 340 миллиардов параметров в контекстном окне 4k
🔢 Обучена на 9 триллионах токенов
🌎 Поддерживает более чем 50 языков и более чем 40 языков программирования
🧠 Трубует 16x H100 в bf16 и ~8x H100 в int4
🤗 Модель доступна на huggingface

Модель: https://huggingface.co/collections/nvidia/nemotron-4-340b-666b7ebaf1b3867caf2f1911
Технический отчет: https://research.nvidia.com/publication/2024-06_nemotron-4-340b

@ai_machinelearning_big_data

Читать полностью…

Machinelearning

6–9 июля проводим Weekend Offer Analytics

Устроиться в Яндекс за выходные — реально. Ищем крутых аналитиков с опытом работы от 2 лет на Python или C++, готовых работать в офисном или гибридном режиме на территории России или Республики Беларусь.

Подавайте заявку до 3 июля — и всего за 3 дня пройдите все технические собеседования. После сможете пообщаться с девятью нанимающими командами и выбрать ту, которая покажется самой интересной. Если всё сложится хорошо, сразу же пришлём вам офер.

Узнать подробности и зарегистрироваться.

Реклама. ООО "Яндекс". ИНН 7736207543

Читать полностью…

Machinelearning

🌟 dstack — open-source cистема оркестрации контейнеров для запуска AI-систем в любом облаке или ЦОДе

pip install "dstack[all]" -U

dstack поддерживает AWS, GCP, Azure, OCI, Lambda, TensorDock, Vast.ai, RunPod и CUDO.
Также можно без проблем использовать dstack для запуска AI-систем на локальных серверах.

🖥 GitHub
🟡 Доки

@ai_machinelearning_big_data

Читать полностью…

Machinelearning

⭐️ Новый генератор видео Dream Machine от Luma AI.

В отличие от Sora или KLING, он доступен для тестов.


Попробовать можно здесь: https://lumalabs.ai/dream-machine

Читать полностью…

Machinelearning

🔧 Проявите свои навыки ML-инженера на EKF AI Challenge. Решите задачу по автоматизации формирования коммерческого предложения и разделите призовой фонд в 500 000 рублей! Старт – 5 июля.

Приглашаем экспертов в области Data Science, ML-специалистов и разработчиков на онлайн-соревнование. EKF AI Challenge – первый инженерный хакатон на Codenrock, где мощь ИИ помогает в разработке решений для электротехнической отрасли.

Не упустите шанс проявить себя – регистрация открыта до 3 июля

Задача участников – разработать решение, которое сможет автоматически создавать коммерческое предложения на основе электрических схем. Сервис должен уметь распознавать на чертежах проводники, переключатели, защитные устройства, датчики и другие элементы из предоставленной номенклатурной базы и собирать их в смету проекта. Организаторы предоставляют размеченный датасет.

💼 Бренд EKF – это:
🔹 Ведущий производитель электрооборудования для ввода, распределения и учета электричества, автоматизации технологических процессов
🔹 Более 19 000 артикулов в номенклатуре
🔹 Собственные программы для интернета вещей – умный дом EKF Connect Home и IIoT EKF Connect Industry для промышленности
🔹 Международный бренд – продукция продается в 20 странах

Лучшие решения хакатона будут внедрены в реальный бизнес EKF. Система автоматического расчета сметы проекта поможет делать клиентам наиболее выгодное и оптимальное предложение.

🗓 Ключевые даты:
🔸 5 июля – открытие хакатона, старт работы над задачей
🔸 9-15 июля – серия чекпоинтов с экспертами
🔸 16 июля – окончание загрузки решений
🔸 18 июля – оглашение имен финалистов
🔸 19 июля – онлайн-питчинг проектов и определение победителей

➡️ Не пропустите уникальный хакатон на стыке инженерных технологий и машинного обучения EKF AI Challengeрегистрируйтесь сейчас

Читать полностью…

Machinelearning

🌟 Follow-Your-Emoji — метод, позволяющий тонко контролировать движения головы и лица

Причём этот метод позволяет управлять движениями произвольных лиц, в том числе нарисованных в разных стилях, а также скульптур и т.д.
Даже движения морды животных можно так анимировать

Метод основан на недавнем исследовании Yue Ma, Hongyu Liu, Hongfa Wang и их команды из Гонконгского университета, код опубликуют в ближайшем будущем

🟡 Страничка Follow-Your-Emoji с примерами
🖥 GitHub (скоро тут будет код)

@ai_machinelearning_big_data

Читать полностью…

Machinelearning

🔈 Separating the "Chirp" from the "Chat": Self-supervised Visual Grounding of Sound and Language

Исследователи Массачусетского технологического университета CSAIL и Google разработали алгоритм DenseAV, который предсказывает то, что он видит, исходя из того, что он слышит.

Он совершенно не контролируется и не использует текст во время обучения.

Алгоритм может соотносить объекты с видео со звуками, которые они издают.

Возможности DenseAV в области локализации основаны на новом методе dense contrastive loss, который наделяет его мощной способность запоминать и локализовывать слова и звуки по сравнению с широко распространенными методами.

DenseAV значительно превосходит известные методы семантической сегментации по речи и звуку.

Paper: https://arxiv.org/abs/2406.05629
Website: https://mhamilton.net/denseav
Code: https://github.com/mhamilton723/DenseAV
Video: https://youtu.be/wrsxsKG-4eE

@ai_machinelearning_big_data

Читать полностью…

Machinelearning

🌟 DeepXDE — библиотека Python для ML и PINN

pip install deepxde

В DeepXDE реализовано множество алгоритмов и поддерживается множество функций:

— DeepXDE позволяет писать код очень лаконично, практически как математическую формулировку

— очень простая работа с геометрическими объектами; примитивами являются — треугольник, прямоугольник, многоугольник, эллипс, звезда, куб, сфера, гиперкуб и гиперсфера; поддерживается работа с облаком точек

— можно учитывать 5 типов граничных условий: Дирихле, Неймана, Робина, периодические и общие, которые могут быть заданы на произвольной области или на множестве точек

В целом, отличная библиотека для PINN и подобных приложений

🖥 GitHub
🟡 Доки

@ai_machinelearning_big_data

Читать полностью…

Machinelearning

🗣 VALLEY 2: Neural Codec Language Models are Human Parity Zero-Shot Text to Speech Synthesizers

В этой статье Microsoft представили VALL-E 2, новейшее достижение в области языковых моделей , которое знаменует собой важную веху в области синтеза текста в речь (TTS), впервые достигая человеческого уровня.

Эксперименты с датасетами LibriSpeech и VCTK показали, что VALL-E 2 превосходит все предыдущие модели по качеству сгенерированной речи и ее естественности.

Подробности: https://arxiv.org/abs/2406.05370
Демо VALL-E 2 будети доступна здесь: https://www.bing.com/?ref=aka&shorturl=valle2

@ai_machinelearning_big_data

Читать полностью…

Machinelearning

📖 В Букмейте появился виртуальный рассказчик, умеющий читать книги в реальном времени

Разработан рассказчик на базе комплекса речевых технологий Яндекса с привлечением профессиональных дикторов. При этом воспроизведение текста максимально приближено к естественной речи, поэтому читатели могут с комфортом слушать произведения на протяжении долгого времени.

На Хабре разработчик функции описал процесс адаптации речевых технологий для книг. Сложность состояла в том, что в литературных произведениях есть необычные сокращения и редкие термины — нужно было обучить модель правильному произношению.

▪️ Habr: https://habr.com/ru/companies/yandex/news/820525/

@ai_machinelearning_big_data

Читать полностью…

Machinelearning

🍏 Прошла конференция Apple и если вы пропустили ее, вот самое интерсное из нее.

Siri превратили в ИИ-помощника, теперь она сможет использовать ваши приложения, объяснять информацию на экране и искать то, что вам нужно практически в любых приложениях и заметках;

Что инетресно, Apple еще в апреле опубликовала статью о своей модели машинного обучения Ferret-UI для распознавания элементов пользовательского интерфейса, в которой раскрыто гораздо больше деталей, чем мы обычно ожидаем от Apple.

"Ferret-UI", мультимодальная модель визуального языка, которая распознает иконки, виджеты и текст на экране мобильного устройства iOS, а также объясняет их расположение и функциональное значение.

Примеры вопросов, которые вы можете задать Ferret-UI:
- Предоставьте краткое описание этого скриншота;
- Для интерактивного элемента укажите фразу, которая наилучшим образом описывает его функциональность;
- Определите, можно ли использовать элемент пользовательского интерфейса.
и тд

В статье даже рассказывается о деталях созданиях датасета и бенчмарка для тестов Apple. Редкая открытость со стороны яблочников!

Они по-настоящему переосмысливают свое направление исследований в области искусственного интеллекта.

Статья была опубликована в апреле без особой пиар-шумихи: https://arxiv.org/abs/2404.05719

@ai_machinelearning_big_data

Читать полностью…

Machinelearning

IT-юрист — это профессия на стыке права и digital-технологий. Специалист составляет договоры, регистрирует объекты интеллектуальной собственности и регулирует использование ИИ.

Нетология и ТюмГУ составили совместную программу онлайн-магистратуры «IT‑юрист». Начинающие специалисты смогут построить карьеру в перспективном направлении, а опытные профессионалы — расширить пул навыков.

Длительность обучения — 2 года. В магистратуре много практики:
- реальные задачи IT-юриста;
- муткорты;
- хакатон;
- вебинары с экспертами;
- практика у партнёра;
- дипломная работа в 2-х форматах на выбор.

В онлайн-магистратуре сочетаются все бонусы очного обучения и удобные удалённые занятия. После защиты выпускной работы вы получите диплом магистра государственного образца.

Записывайтесь, чтобы освоить перспективную профессию.

📝Оставить заявку: https://netolo.gy/ddpE
Реклама ООО “Нетология” 2VSb5wW1DyJ

Читать полностью…

Machinelearning

🌟 Micro Agent будет писать код до тех пор, пока тот не будет соответствовать тестам

npm install -g @builder.io/micro-agent

Micro Agent — это маленький AI-агент, который заточен под одно применение: агент пишет тест, а потом пишет под этот тест код.
По задумке, такой подход должен гарантировать как минимум валидность кода, а как максимум — код будет решать все поставленные задачи

🖥 GitHub

@ai_machinelearning_big_data

Читать полностью…

Machinelearning

🌟 Hallo: новый подход в анимации портретных изображений на основе аудио

Hallo объединяет генеративные диффузионные модели, денойзер на основе UNet, методы временного согласования отдельных движений и опорную нейросеть, а также даёт возможность контролировать выражение и движения лица.

🖥 GitHub
🟡 Предобученные модели на Hugging Face
🟡 Arxiv

@ai_machinelearning_big_data

Читать полностью…

Machinelearning

🌟 MusicGPT — приложение для локального запуска моделей, генерирующих музыку

brew install gabotechs/taps/musicgpt

MusicGPT позволяет запускать новейшие модели для генерации музыки локально на любой платформе, без установки тяжелых зависимостей, таких как ML-фреймворки.

В данный момент MusicGPT поддерживает только MusicGen от Meta, но в планах — ещё больше различных моделей генерации музыки.

Быстрый старт с помощью Docker:
docker run -it --gpus all -p 8642:8642 -v ~/.musicgpt:/root/.local/share/musicgpt gabotechs/musicgpt --gpu --ui-expose

или, используя cargo:
cargo install musicgpt

🖥 GitHub

@ai_machinelearning_big_data

Читать полностью…

Machinelearning

⚡️ Semantic Kernel — open-source SDK, который позволяет интегрировать LLM от OpenAI, с Hugging Face и другие, с обычными языками программирования типо C#, Python и Java

pip install semantic-kernel

Таким образом при помощи Semantic Kernel можно создавать LLM-агентов, которые не просто отвечают на вопросы, а могут взаимодействовать с написанным кодом

🖥 GitHub
🟡 Доки

@ai_machinelearning_big_data

Читать полностью…

Machinelearning

⚡️ WebLLM — высокопроизводительный браузерный движок для инференса LLM

npm install @mlc-ai/web-llm

WebLLM позволяет осуществлять вывод LLM непосредственно в браузере с ускорением WebGPU.

WebLLM имеет полную совместимость с API OpenAI: поддерживаются потоковая передача, JSON-режим и многое другое.

Также WebLLM поддерживает целый ряд моделей, включая Llama 3, Phi 3, Gemma, Mistral, Qwen и многие другие

🖥 GitHub
🟡 Доки
🟡 Чат с WebLLM

@ai_machinelearning_big_data

Читать полностью…

Machinelearning

🌟 PowerInfer-2 — быстрый вывод LLM на смартфоне

Встречайте PowerInfer-2 — высокооптимизированный фреймворк для вывода от LLM, разработанный специально для смартфонов. PowerInfer-2 поддерживает модели до 47B Mixtral MoE, достигая скорости 11,68 токенов в секунду, что в 22 раза быстрее, чем у других современных фреймворков.
При использовании 7B моделей PowerInfer-2 тоже сохраняет высокую скорость

🤗 Hugging Face
🖥 GitHub

@ai_machinelearning_big_data

Читать полностью…

Machinelearning

🌟 Mozilla выпустила сервис для ИИ-генерации веб-сайтов Solo 1.0

11 июня 2024 года компания Mozilla представила первый мажорный выпуск бесплатного сервиса для ИИ-генерации веб-сайтов под названием Solo.

Платформа для создания сайтов Solo 1.0 использует механизмы машинного обучения для автоматической генерации типовых элементов интерфейса. Проект позиционируется как инструмент, позволяющий пользователю быстро создать стильный и современный персональный или корпоративный сайт, не имея навыков веб-разработки.

Процесс создания сайта на базе решения Solo сводится к определению его тематики, выбору стиля шрифтов и цветовой гаммы, указанию типовых секций, таких как сведения о компании, расписание, отзывы клиентов, примеры работ и контактная информация.

После определения пользователем пожеланий ИИ-система Solo генерирует вариант веб-сайта, а затем предлагает в визуальном режиме адаптировать компоновку на свой вкус и добавить содержимое в шаблоны секций.

Стиль и базовое заполнение генерируется при помощи AI, а подходящие выбранной тематике изображения автоматически подбираются в каталоге Unsplash. Поддерживаются такие дополнительные возможности как вывод баннера согласия с использованием Cookie и SEO-оптимизация.

Публикация созданных сайтов в рамках сервиса бесплатна, а монетизация обеспечивается за счёт платной привязки к собственному домену (никто не мешает пользователю вручную перенести созданный сайт на свой хостинг). В будущем Mozilla планирует расширить спектр доступных стилей и режимов редактирования, а также добавить поддержку генерации изображений Favicon.

🟡 Solo

@ai_machinelearning_big_data

Читать полностью…

Machinelearning

⚡️ Встречайте Stable Diffusion 3!

Самая лучшая бесплатная модель text-to-image.

Модель с 2 миллиардами параметров работает даже на ноутбуках,

Качество генерации —высочайшее, понимание промтов - на высочайшем уровне, генерирует даже картинки с текстом и все без ошибок!

Анонс
Hugging Face.
ComfyUI

@ai_machinelearning_big_data

Читать полностью…

Machinelearning

Сбер проведет открытую технологическую конференцию GigaConf 2024.

27 июня в «Дизайн заводе» соберутся ведущие инженеры и разработчики из Сбера, Билайна, Positive Technologies, Т-Банка, МТС и других компаний.

Вместе они погрузят вас в темы:
— машинное обучение и искусственный интеллект;
— инструменты разработчика;
— DevOps;
— инженерия данных;
— безопасность приложений;
— системный анализ
— инновации и стратегии.

Зарегистрироваться и узнать подробности можно на сайте конференции.
Участие бесплатное!

Читать полностью…

Machinelearning

⚡️ Собственную разработку Яндекса YaFSDP выложили в опенсорс

С её помощью можно ускорить обучение больших языковых моделей с открытым исходным кодом до 25%, в зависимости от архитектуры и параметров нейросети.

YaFSDP лучше оптимизирует ресурсы графических процессоров на всех этапах обучения: pre-training (предварительное обучение), supervised fine-tuning (обучение с учителем), alignment (выравнивание модели). Благодаря этому библиотека стала использовать ровно столько памяти GPU, сколько нужно для обучения, а коммуникацию между графическими процессорами теперь ничто не замедляет.

▪️GitHub: https://github.com/yandex/YaFSDP
▪️Habr: https://habr.com/ru/companies/yandex/articles/817509/

@ai_machinelearning_big_data

Читать полностью…

Machinelearning

📆 20 июня поговорим, как AI меняет мир бизнеса.

➡️ Регистрация ⬅️

🖥 Искусственный интеллект трансформирует бизнес-реальность прямо сейчас.

➡️Помогает компаниям принимать обоснованные стратегические решения

➡️Выводит процессы на новый уровень эффективности

На вебинаре представители DIRECTUM и MWS расскажут, как уже сегодня крупный и средний бизнес использует ИИ для снижения затрат, улучшения клиентского опыта и создания конкурентных преимуществ на рынке.

Обсудим:

🔴Экосистему решений Directum. Возможности Directum RX Intelligence для ускорения бизнес-процессов и исключения человеческих ошибок

🔴Кейсы применения Directum RX Intelligence
для делопроизводства, бухгалтерии, договорного отдела, проектных команд, юристов, менеджеров

🔴 Преимущества размещения Directum RX Intelligence в облаке MWS. Вы узнаете, как мы помогаем бизнесу стать эффективнее и обеспечиваем защиту данных.

Приходите! Ответим на ваши вопросы ✉️

Реклама. Информация о рекламодателе

Читать полностью…

Machinelearning

🌟 SF-V — новый метод генерации видео от Snapchat.

SF-V — это метод генерации видео, который позволяет генерировать динамические и согласованные видео за 1 проход.
В исследовании команда из Snapchat берёт обычную многошаговую диффузионную модель, и обучает её улавливать как временные, так и пространственные зависимости в видеоданных для получения цельных видео.

🟡 Страничка SF-V
🖥 GitHub

@ai_machinelearning_big_data

Читать полностью…

Machinelearning

⚡️L-MAGIC: Language Model Assisted Generation of Images with Coherence

Новая модель Intel- L-MAGIC
может создавать качественные панорамные сцены на основе одного входного изображения и текстового промпта!

Многочисленные тесты показывают, что модель генерирует панорамные сцены с лучшим расположением сцен и качеством рендеринга по сравнению с аналогичными моделями.

Github: https://github.com/IntelLabs/MMPano
Paper: https://arxiv.org/abs/2406.01843
Project: https://zhipengcai.github.io/MMPano/
Video: https://youtu.be/XDMNEzH4-Ec

@ai_machinelearning_big_data

Читать полностью…

Machinelearning

⚡️ AGiXT — open-source платформа, которая позволяет легко организовать выполнение сложных задач различными AI-агентами

git clone https://github.com/Josh-XT/AGiXT
cd AGiXT
./AGiXT.ps1


AGiXT — это платформа для эффективного управления AI-системами с помощью различных инструментов. Наши агенты оснащены адаптивной памятью, и это универсальное решение предлагает мощную систему плагинов, поддерживающую широкий спектр команд, включая просмотр веб-страниц.

AGiXT имеет множество удобных плагинов для создания эффективных AI-решений

🖥 GitHub
🟡 Доки
🟡 Примеры использования

@ai_machinelearning_big_data

Читать полностью…

Machinelearning

🌟 xLSTM — Расширенная долговременная краткосрочная память

pip install xlstm

Не так давно был пост со статьёй Arxiv об архитектуре xLSTM, и вот команда исследователей xLSTM опубликовала код на GitHub.
xLSTM — это новая архитектура рекуррентной нейронной сети, основанная на идеях привычной нам LSTM. Благодаря экспоненциальному гейтингу с соответствующими методами нормализации и стабилизации и новой матричной памяти она преодолевает ограничения оригинальной LSTM и демонстрирует производительность при обработке естественного языка по сравнению с трансформерами или другими архитектурами.

🖥 GitHub
🟡 Arxiv

@ai_machinelearning_big_data

Читать полностью…

Machinelearning

Flash Diffusion — ускорение любой диффузионной модели генерации изображений в несколько шагов

Так называется работа, которую на днях опубликовали Clément Chadebec, Onur Tasar и их коллеги.
Это метод дистилляции для создания быстрых диффузионных моделей.
При обучении модели таким методом на наборах данных COCO2014 и COCO2017 показатели FID и CLIP-Score достигают хороших значений; при этом требуется всего несколько часов обучения на GPU и меньшее количество параметров модели, чем требуют существующие методы.

🟡 Страничка Flash Diffusion
🖥 GitHub

🤗 Flash SD
🤗 Flash SDXL

@ai_machinelearning_big_data

Читать полностью…
Подписаться на канал