🌟 Text-to-Speech в браузере на безе OuteTTS.
Простое приложение React + Vite для запуска OuteTTS с помощью Transformers.js и WebGPU.
Попробовать демо можно на HuggingSpace. При первом запуске модель загружается в кэш браузера, это занимает какое-то время.
▶️ Локальная установка и запуск:
# Clone the repository
git clone https://github.com/huggingface/transformers.js-examples.git
# Go to project dir
cd transformers.js-examples/text-to-speech-webgpu
# Install the dependencies via npm
npm i
# Run dev server
npm run dev
# Open your browser and go to http://localhost:5173
📌Монография "Reinforcement Learning: An Overview"
Исчерпывающий материал по обучению с подкреплением (Reinforcement Learning, RL), в котором подробно описываются различные модели среды, задачи оптимизации, исследуется определение компромисса между теорией и практической эксплуатаций RL.
Отдельно рассматриваются смежные темы: распределенное RL, иерархическое RL, обучение вне политики и VLM.
В работе представлен обзор алгоритмов RL:
🟢SARSA;
🟢Q-learning;
🟢REINFORCE;
🟢A2C;
🟢TRPO/PPO;
🟢DDPG;
🟢Soft actor-critic;
🟢MBRL.
Автор - Kevin Murphy, главный научный сотрудник и руководитель команды из 28 ресечеров и инженеров в Google Deepmind. Группа работает над генеративными моделями (диффузия и LLM), RL, робототехникой, байесовским выводом и другими темами.
Кевин опубликовал более 140 статей на рецензируемых конференциях и в журналах, а также 3 учебника по ML, опубликованных в 2012, 2022 и 2023 годах издательством MIT Press. (Книга 2012 года была удостоена премии ДеГроота как лучшая книга в области статистической науки).
🔜 Монография опубликована в открытом доступе 9 декабря 2024 года.
@ai_machinelearning_big_data
#AI #ML #Book #RL
Салют от команды GigaChat! Приглашаем на конференцию по технологиям ИИ
📆 17 декабря, 12:30 (МСК, GMT+3)
📍 Офлайн в Москве. Для посещения в офлайне нужно дождаться приглашения от организаторов.
🌐 Онлайн-трансляция на сайте SberDevices
В программе — 9 докладов о том, как ИИ учится говорить, слышать, фильтровать данные и помогать людям. Спикеры расскажут про создание ИИ-агентов и персонажей, эмбеддинги и навыки моделей. Поделятся способами фильтровать данные и быстро обучать мощные модели.
Вас ждут новости разработки GigaChat и ассистента Салют, а также расскажут про open-source модели.
Участвуйте в дискуссиях с другими участниками и задавайте вопросы спикерам во время докладов. А офлайн-участников ждут афтерпати и стенды с технологиями: можно будет протестировать GigaChain и технологии GigaChat Audio, а также поработать с гипотезами в GigaPlayground.
Для участия нужно зарегистрироваться на сайте.
Больше подробностей — в Telegram-канале конференции.
Реклама. ПАО Сбербанк. ИНН 7707083893
В «Золотом Яблоке» можно создавать кастомные подарочные карты с дизайном от YandexART 🎨
«Золотое Яблоко» внедрило Yandex AI Rendering Technology — диффузионную нейросеть, которая создаёт изображения в ответ на текстовые запросы. Теперь она генерирует уникальные подарочные карты по запросам покупателей.
Пока генерация работает на сайте, а в декабре заработает и в приложении. С безопасностью, кстати, всё в порядке: сервис не делает дизайны на спорные темы.
Нейросеть можно использовать и в других сценариях:
генерировать материалы для сайта или брендбука;
придумывать маскотов;
создавать фирменные иконки и логотипы.
Тем, кто собирается решать с помощью нейросетей бизнес‑задачи, рекомендуем попробовать Playground в консоли Yandex Cloud.
🌟 EuroLLM: многоязычные модели европейских языков.
EuroLLM - проект, финансируемый ЕС, цель которого создание набора LLM, способных понимать и генерировать текст на всех языках Европейского Союза, а также на некоторых других распространенных не-ЕС языках:
Болгарский, хорватский, чешский, датский, голландский, английский, эстонский, финский, французский, немецкий, греческий, венгерский, ирландский, итальянский, латышский, литовский, мальтийский, польский, португальский, румынский, словацкий, словенский, испанский, шведский, арабский, каталанский, китайский, галисийский, хинди, японский, корейский, норвежский, русский, турецкий и украинский.
▶️В коллекции представлены модели:
🟢EuroLLM-9B - модель с 9 млрд. параметров, контекстом 4096, обученная на 4 трлн. токенов;
🟢EuroLLM-9B-Instruct - инструктивная версия на основе EuroBlocks, набора данных для настройки инструкций, ориентированного на общее следование инструкциям и машинный перевод;
🟠EuroLLM-1.7B - модель с 1,7 млрд. параметров, контекст - 4096;
🟠EuroLLM-1.7B-Instruct - инструктивная версия на датасете EuroBlocks. Демо
⚠️ Ко всем моделям неофициально выпущены квантованные версии в GGUF-формате, ссылки доступны в карточке модели на HF.
▶️Пример кода инференса EuroLLM-9B на Transformers:
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "utter-project/EuroLLM-9B"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
text = "English: My name is EuroLLM. Portuguese:"
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=20)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
🌟 ShowUI-2B: VLM для взаимодействия с графическими интерфейсами.
ShowUI-2B - VLM на базе Qwen2-VL-2B, которая оптимизирована для взаимодействия с GUI. Она обладает глубоким пониманием пользовательских интерфейсов и навигации по ним на веб- и мобильных платформах.
Модель обрабатывает комбинацию визуальных и текстовых данных для создания соответствующих действий GUI. Она интерпретирует скриншоты и текстовые инструкции для определения точек и последовательности взаимодействия.
В качестве входных данных ShowUI-2B может принимать: скриншоты интерфейсов,
текстовые инструкции (или запросы), системные промпты, определяющие области действия и
последовательности действий.
Результат инференса модели: координаты расположения элементов пользовательского интерфейса [x,y], действия (щелчок, ввод, выбор и т.д.), значения для ввода текста и
целевые позиции для взаимодействия.
Для мобильных интерфейсов ShowUI-2B обрабатывает касания, свайпы и ввод текста.
Прикладные сферы применения :
🟢Автоматизированное тестирование интерфейса;
🟢Агенты автоматизации задач;
🟢Интерактивные учебные пособия и системы рекомендаций;
🟢UX\UI-задачи приложений и веб-сайтов.
ShowUI-2B продемонстрировала высокую эффективность в задачах zero-shot grounding (75.1% точности) и навигации по GUI на различных платформах (Web, Mobile, Online).
⚠️ Модель поддерживает интеграцию с Computer Use OOTB, проектом Desktop GUI Agent, который позволяет управлять действиями на PC с помощью LLM, запущенной локально или через API.
▶️Установка и запуск с GradioUI:
# Clone the Repository
git clone https://github.com/showlab/ShowUI.git
cd ShowUI
# Install Dependencies
pip install -r requirements.txt
# Start the GradioUI
python app.py
# Go to local URL: http://127.0.0.1:7860
📎 ML в медицине: дайджест за 1 - 7 декабря 2024 г.
▶️Модели, бенчмарки и датасеты
🔘SOAR: бенчмарк для оценки LLM в задачах аннотации типов клеток.
Тест, который проверяет, насколько хорошо модели могут понимать и анализировать сложные данные о клетках.
🔘Повышение точности диагностики рентгенограмм грудной клетки с помощью анализа направления взгляда врачей.
Система 2-х нейросетей, которая помогает диагностировать заболевания по рентгенограммам грудной клетки и предсказывает, на какие области изображения врачи обращают внимание.
🔘EchoONE: унифицированная модель для сегментации множества плоскостей эхокардиографии.
Модель, которая помогает врачам более точно анализировать снимки сердца, сделанные с помощью ультразвука, даже если снимки сделаны под разными углами.
▶️Фреймворки и методологии
🔘RARE: RAG-ризонинг.
Метод для улучшения способности рассуждать и давать точные ответы, используя комбинацию генерации и поиска информации для обогащения своих знаний.
🔘STORM: cтратегия организации модальностей для классификации редких событий.
Алгоритм, который помогает выбрать лучшие источники информации для решения сложных медицинских задач.
🔘TransFair: прогноз прогрессирования глазных заболеваний.
Модель классификации, которая помогает сделать прогнозы о глазных заболеваниях более справедливыми и точными.
🔘PePR: оценка эффективности моделей с учетом потребления ресурсов.
Показатель, который помогает оценить, насколько эффективно модель использует ресурсы.
🔘Оценка качества рентгенологических заключений с помощью сопоставления клинических данных с изображением.
Метод оценки качества автоматически сгенерированных рентгенологических отчетов, который учитывает точность описания патологических изменений, их локализации и степени выраженности.
▶️Медицинские LLM-приложения
🔘MedChain: LLM-агент и бенчмарк для принятия клинических решений.
Набор данных и система для имитации реальной клинической практики, где каждый случай включает подробную информацию о пациенте и требует активного сбора информации и принятия решений на основе предыдущих шагов.
🔘QG-Summ: автореферирование медицинских записей с самоконтролем, управляемое запросами.
Метод, который помогает создавать краткие и точные отчеты о состоянии пациентов в электронных медкартах, используя запросы, связанные с пациентом, для руководства процессом.
🔘CLINICSUM: генерация медицинских заключений из диалогов врача и пациента.
Фреймворк, который может автоматически создавать медицинские заключения на основе разговоров между врачом и пациентом, используя специальную архитектуру.
▶️Исследования и обзоры
*️⃣Проблемы производительности LLM для здравоохранения с учетом демографической справедливости.
Исследование проблемы демографической предвзятости популярных современных LLM в различных медицинских задачах.
*️⃣Применение эмбединг-моделей для классификации медицинских текстов.
Статья о том, как использовать эмбединги для классификации медицинских текстов без необходимости обучения на медицинских данных.
*️⃣BlockMedCare: блокчейн, ИИ и IoT для здравоохранения будущего.
Концепция системы для безопасного и эффективного управления электронными медицинскими картами, позволяя пациентам, врачам и администраторам взаимодействовать с системой на различных устройствах.
🔜 Читать полный дайджест
🔜Telegraph
@ai_machinelearning_big_data
🌟 Fish Speech V1.5: модель преобразования текста в речь и клонирования голоса.
Fish Speech - модель генерации TTS обновилась до версии 1.5. Эта версия обучалась на 1 млн.часов мультиязычных аудиоданных и заняла 2 место в бенчмарке TTS-Arena (как "Anonymous Sparkle").
Заявлена задержка <150 мс с высококачественным мгновенным клонированием голоса.
▶️Языковая структура обучающего корпуса версии 1.5:
🟢Английский (en) >300 тыс. часов
🟢Китайский (zh) >300 тыс. часов
🟢Японский (ja) >100 тыс. часов
🟢Немецкий (de) ~20 тыс. часов
🟢Французский (fr) ~20 тыс. часов
🟢Испанский (es) ~20 тыс. часов
🟢Корейский (ko) ~20 тыс. часов
🟢Арабский (ar) ~20 тыс. часов
🟠Русский (ru) ~20 тыс. часов
🟢Голландский (nl) <10 тыс. часов
🟢Итальянский (it) <10 тыс. часов
🟢Польский (pl) <10 тыс. часов
🟢Португальский (pt) <10 тыс. часов
Fish Speech для локального инференса требует 4Gb GPU и 8 BG GPU для файнтюна. Запуск возможен на MacOS, Linux и Windows в режимах CLI, GUI и WebUI и Docker.
Подробные инструкции по установке, инференсу в различных режимах для каждой платформы, туториал по файнтюну и примеры доступны в документации проекта Fish Speech.
⚠️ Репозиторий на Github еще не обновлен информацией о версии 1.5, а официальное демо от разработчиков поддерживает синтез только на английском, китайском и японском.
📌Лицензирование: CC-BY-NC-SA-4.0 License.
🟡Модель
🟡Demo
🟡Документация
🟡Сообщество в Discord
🖥GitHub
@ai_machinelearning_big_data
#AI #ML #TTS #FIshSpeech
⚡️ Llama 3.3 70B.
Модель доступна в версии с 70 млрд параметров и оптимизирована для диалоговых сценариев использования на нескольких языках. Llama 3.3 превосходит многие доступные модели с открытым и закрытым исходным кодом по стандартным отраслевым бенчмаркам.
Llama 3.3 основана на оптимизированной архитектуре трансформера и использует авторегрессивный подход. Настройка модели включает SFT с RLHF для согласования с человеческими предпочтениями в отношении полезности и безопасности.
Модель была обучена на новом наборе общедоступных онлайн-данных, включающем более 15 триллионов токенов, с ограничением по свежести данных до декабря 2023 года.
Llama 3.3 поддерживает английский, немецкий, французский, итальянский, португальский, хинди, испанский и тайский языки.
▶️ Пример инфренса на Transformers:
import transformers
import torch
model_id = "meta-llama/Llama-3.3-70B-Instruct"
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
device_map="auto",
)
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Who are you?"},
]
outputs = pipeline(
messages,
max_new_tokens=256,
)
print(outputs[0]["generated_text"][-1])
🎨Исследователи создали новый способ генерации изображений, который не уступает методу диффузии
Ученые из Yandex Research представили новый подход к генерации изображений: Switti (Scale-wise transformer for text-to-image synthesis). Команда взяла за основу AR-модели, которые автоматически предсказывают следующий компонент последовательности на основе всех предыдущих компонентов этой последовательности. Однако изменился сам подход: модель прогнозирует уже не токен, а сам скейл: изображение генерируется по тексту разрешение за разрешением.
Кажется, идея оказалось рабочей. Switty генерирует изображения в 7 раз быстрее (0.1 секунда), чем SDXL и в 2 раза быстрее, чем у SDXL-Turbo. При этом качество сопоставимо с диффузионными моделями.
Приятно наблюдать за новыми решениями, которые драйвят сферу и предлагают конкурентную альтернативу устоявшимся диффузионным моделям. Учитывая скорость, Switti смело можно будет использовать в случаях, когда необходимо создать большое количество изображений за короткое время.
Модель Switti уже доступна для тестирования. Можно ознакомиться с результатами работы на платформе Hugging Face: демонстрационная версия.
Для разработчиков доступен исходный код на GitHub: репозиторий проекта.
@ai_machinelearning_big_data
Пишите код быстрее и оставляйте больше времени на творчество вместе с AI-ассистентом разработчика
Устали от рутины? Отдайте ее AI!
Заходите на платформу GitVerse и пишите код вместе с AI-ассистентом GigaCode. Он поддерживает более 35 языков, умеет анализировать контекст, дописывать строки и функции в автоматическом и ручном режимах, а еще — писать код по комментариям и делать рефакторинг с помощью коротких команд. Всего за пару минут AI-помощник может оценить проект и трудозатраты на его создание.
Внутри AI есть функция CodeChat — с ней можно оптимизировать или отрефакторить имеющийся код, сгенерировать тесты и документацию, а также объяснить фрагмент кода. Задавать вопросы можно и по всему открытому файлу, и по конкретному фрагменту — просто выделите его в редакторе и сформулируйте запрос к CodeChat.
Хорошие новости — недавно GigaCode обновился и стал еще лучше справляться с задачами разработки: теперь наиболее вероятные продолжения кода будут генерироваться с учётом контекста всего проекта. Не забудьте обновить плагин GigaCode :)
Зарегистрироваться на GitVerse.
🌟 Mooncake: Кэш-центричная архитектура с разнесением для обслуживания LLM.
Mooncake - это опенсорс-версия решений для платформы LLM-сервиса Kimi, используемой Moonshot AI.
Платформа использует KVCache-центричную разнесенную архитектуру, которая разделяет кластеры предварительной обработки (prefill) и декодирования (decode), и использует свободные ресурсы CPU, DRAM и SSD кластера GPU для распределения KVCache.
Mooncake использует планировщик, который максимизирует общую пропускную способность за счет политики раннего отклонения запросов на основе прогнозирования при соблюдении требований к SLO (Service Level Objectives).
Основной компонент Mooncake - Transfer Engine, который обеспечивает быструю, надежную и гибкую передачу данных по протоколам TCP, RDMA, NVIDIA GPUDirect RDMA и NVMe over Fabric (NVMe-of). Transfer Engine обладает меньшей задержкой ввода-вывода по сравнению с gloo (используется в Distributed PyTorch) и TCP.
Transfer Engine оптимизирует использование нескольких устройств RDMA NIC, выбор лучшего пути с учетом топологии и обеспечивает повышенную устойчивость к временным ошибкам сети.
В сетях RoCE 4×200 Gbps и 8×400 Gbps Transfer Engine показывает пропускную способность до 87 ГБ/с и 190 ГБ/с соответственно, что примерно в 2,4 и 4,6 раза быстрее, чем протокол TCP.
На базе Transfer Engine реализована библиотека P2P Store, которая позволяет обмениваться временными объектами (например, чекпоинтами) между узлами кластера. Transfer Engine интегрирован с vLLM для повышения эффективности разнесения prefill-decode.
Тесты показали, что Mooncake превосходит базовые методы обслуживания LLM в сценариях с длинным контекстом: пропускная способность увеличивается на 525% в некоторых смоделированных сценариях при соблюдении SLO, а в реальных рабочих нагрузках Mooncake позволяет Kimi обрабатывать на 75% больше запросов.
📌Лицензирование: Apache 2.0 License.
🟡Arxiv
🖥Github
@ai_machinelearning_big_data
#AI #ML #LLM #Mooncake
🌟 PydanticAI: фреймворк для создания AI-агентов на основе Pydantic.
PydanticAI - фреймворк для Python, созданный командой разработчиков Pydantic, который упрощает создание приложений с использованием LLM. Фреймворк имеет простой и интуитивно понятный интерфейс для взаимодействия с LLMs, поддерживающими Async OpenAI (Ollama) и openAI API (ChatGPT, Gemini и Groq), с поддержкой Anthropic в ближайшем будущем.
Основная особенность PydanticAI - система внедрения зависимостей, которая передает данные, соединения и логику в целевую модель. Она упрощает тестирование и оценку агентов и позволяет динамически формировать системные промпты и определять инструменты, доступные LLM.
PydanticAI имеет возможность потоковой обработки ответов с валидацией структурированных данных, позволяя контролировать корректность соответствие данных ожидаемому ответу, тем самым повышая эффективность и интерактивность приложений.
Для отладки и мониторинга работы агентов предусмотрена интеграция с Pydantic Logfire, с которым можно отслеживать запросы к базам данных, анализировать поведение модели и оценивать производительность.
▶️ В документации к проекту доступны примеры применения PydanticAI в сценариях:
🟢Построение Pydantic-модели на основе текстового ввода;
🟢Погодный агент;
🟢Агент поддержки клиентов банка;
🟢Генерация SQL-запросов на основе пользовательского ввода;
🟢RAG-поиск по массиву markdown-документам;
🟢Вывод результатов работы агента в терминале;
🟢Пример проверки потокового структурированного ответа на примере информации о видах китов;
🟢Простой чат-приложение.
⚠️ PydanticAI находится на ранней стадии бета-тестирования.
▶️Установка и простой пример "Hello Word" с Gemini-1.5-flash:
# Install via PyPI
pip install pydantic-ai
# Set Gemini API key
export GEMINI_API_KEY=your-api-key
# Run example
from pydantic_ai import Agent
agent = Agent(
'gemini-1.5-flash',
system_prompt='Be concise, reply with one sentence.',
)
result = agent.run_sync('Where does "hello world" come from?')
print(result.data)
"""
The first known use of "hello, world" was in a 1974 textbook about the C programming language.
"""
🌟 LLaMA-O1: модели ризонинга на базе Llama-3.1-8B-Instruct.
Набор моделей ризонинга от SimpleBerry Research Lab на Hugging face, полученные с использованием методик:
🟢LlaMA-Berry - попарная оптимизация для решения математических задач олимпиадного уровня с помощью поиска Монте-Карло;
🟢Critic-V - методика подключения внешней модели-критика;
🟢MCTSr - метод интеграции LLM с алгоритмом поиска по дереву Монте-Карло для повышения точности решения математических задач.
▶️ LLaMA-O1-Base-1127 - базовая модель ризонинга, файнтюн Llama-3.1-8B-Instruct на датасете longcot_pt. Квантованные версии в формате GGUF.
▶️ LLaMA-O1-Supervised-1129 - файнтюн базовой модели LLaMA-O1-Base-1127 на датасете OpenLongCoT-SFT с использованием комбинаций методов Critic-V и MCTSr. Квантованные версии в формате GGUF.
⚠️ Тестов и бенчмарков официально не предоставлено, демо модели LLaMA-O1-Supervised-1129 можно попробовать в этом HF Space
🟡Набор моделей и датасетов
🟡Demo
🖥GitHub
@ai_machinelearning_big_data
#AI #ML #LLM #Resoning #LlaMA_O1
🌟 10 лет нейросетей в Поиске Яндекса: от первых экспериментов до Нейро
В декабре 2014 года началась эпоха нейросетей в поисковике Яндекса: разработчики впервые применили их для поиска похожих изображений. За эти 10 лет технологии прошли впечатляющую эволюцию, изменив то, как мы ищем информацию каждый день.
2015 год принёс первый серьёзный прорыв: нейросети научились оценивать релевантность самой картинки запросу, а не только окружающего текста. Это стало началом большого пути.
Ключевые этапы эволюции:
🟠2016-2017: "Палех" и "Королёв" - нейросети научились понимать смысл текстов для лучшего поиска.
🟠2020: YATI - трансформер, принесший рекордные улучшения в качестве ранжирования.
🟠2024: Технология Нейро объединила весь опыт работы с текстом и изображениями, позволив поиску суммаризировать результаты и работать с комбинированными запросами.
⚠️ Технологии, начавшиеся как отдельные эксперименты, за десятилетие эволюционировали в единую систему умного поиска, которой мы пользуемся каждый день.
🟡Статья
@ai_machinelearning_big_data
#AI #ML #Search
🔥 Российские ученые представят рекордное количество работ на NeurIPS 2024 в Ванкувере.
Специалисты из AIRI подготовили к презентации 17 научных работ. Среди исследуемых тем — обновление крупнейшего в мире датасета для лекарственных молекул, оптимизация в машинном обучении, а также методы удешевления обучения AI-моделей.
Одна из работ, подготовленных совместно с Лабораторией искусственного интеллекта Сбера, изучает влияние эмоций на принятие решений нейросетями. По словам старшего вице-президента Сбера Андрея Белевцева, такой успех говорит о высокой конкурентоспособности отечественной науки в области AI на мировой арене.
@ai_machinelearning_big_data
#AI #LLM
📌Интерактивное руководство по Prompt Engineering для Ollama.
Репозиторий на Github c набором ipynb-туториалов по Prompt Engineering для освоения методов создания оптимальных промптов для модели Qwen2.5-14B.
Руководство разделено на 9 глав с практическими упражнениями и приложением с "продвинутыми" методами. В каждой главе есть "Example Playground" для экспериментов с примерами и наблюдения за изменениями в инференсе Ollama.
Руководство использует модель Qwen 2.5-14B, но все материалы подходят и для модели Qwen 2.5-7B.
▶️Содержание:
Начальный уровень
🟢Глава 1: Базовая структура промпта.
🟢Глава 2: Ясность и прямота.
🟢Глава 3: Назначение ролей.
Средний уровень
🟢Глава 4: Отделение данных от инструкций.
🟢Глава 5: Форматы данных инференса и речь для Ollama.
🟢Глава 6: Рассуждение (шаг за шагом).
🟢Глава 7: Использование примеров.
Продвинутый уровень
🟠Глава 8: Избегание галлюцинаций.
🟠Глава 9: Создание сложных промптов (примеры использования для реальных задач):
🟢Сложные промпты с нуля - чатбот;
🟢Сложные промпты с нуля по юридическим услугам;
🟢Упражнение: Сложные промпты для финансовых услуг;
🟢Упражнение: Сложные промпты для программирования.
Приложение: За пределами стандартных подсказок
🟠Цепочка промптов.
🟠Использование инструментов.
📌Лицензирование: MIT License.
🖥GitHub
@ai_machinelearning_big_data
#AI #ML #LLM #Github #Tutorial #Ollama
✔️ Венчурный фонд a16z представил прогноз ключевых технологических трендов на 2025 год.
Эксперты Andreessen Horowitz ожидают рост спроса на ядерную энергию для обеспечения растущих потребностей центров обработки данных искусственного интеллекта. Появятся новые профессии, требующие навыков в области аппаратного и программного обеспечения, робототехники и автоматизации.
XR-устройства получат развитие как инструменты для разработчиков, создающих приложения для реального мира. В сфере здравоохранения ИИ будет использоваться для демократизации доступа к медицинской информации и решения кадрового кризиса. Ожидается рост популярности периферийного ИИ и создание крупных вычислительных центров для обучения и развертывания моделей ИИ.
a16z.com
✔️ В Китае создан ИИ для написания политически корректных документов.
Китайский интернет-гигант Baidu совместно с партийным приложением Xuexi разработал инструмент на основе искусственного интеллекта, который помогает чиновникам создавать политически корректные документы. Xuexi – это приложение, посвященное жизни и идеям Си Цзиньпина.
Новый инструмент проверяет документы на соответствие идеям Си Цзиньпина и гарантирует, что ссылки на его высказывания взяты из проверенных источников. Инструмент также может использоваться для создания документов с цитированием государственной статистики и политики.
theregister.com
✔️ Бывший сотрудник OpenAI создает стартап в области AI-аудио.
Алексис Конно, один из разработчиков Advanced Voice Mode для ChatGPT, основал стартап WaveForm, который занимается созданием системы AI-аудио, способной улавливать больше нюансов речи, чем существующие технологии. WaveForm, получивший начальное финансирование в размере 40 млн. долл. от Andreessen Horowitz, стремится создать систему, которая пройдет "речевой тест Тьюринга", то есть сможет имитировать человеческую речь настолько точно, что пользователи не смогут отличить ее от живого собеседника. В настоящее время WaveForm, состоящий из 5 сотрудников, находится на стадии разработки своих моделей.
axios.com
✔️ Ultralytics YOLO11 была взломана и содержит криптомайнер.
Ultralytics YOLO11, модель, предназначенная для обнаружения объектов, была скомпрометирована в результате атаки на цепочку поставок. Вредоносный код, внедренный в версии 8.3.41 и 8.3.42, устанавливал криптомайнер на устройства пользователей, скачавших библиотеку с через Python Package Index (PyPI). Ultralytics, используемая в популярных проектах SwarmUI и ComfyUI, загружалась более 260 000 раз за сутки. Вредоносный код запускал майнер XMRig, подключающийся к пулу "connect.consrensys[.]com:8080".
Разработчики Ultralytics удалили скомпрометированные версии и выпустили обновление 8.3.43, устраняющее уязвимость. Расследование показало, что атака, возможно, была осуществлена через два вредоносных запроса на внесение изменений в код от пользователя из Гонконга. В настоящее время проводится полный аудит безопасности для предотвращения подобных инцидентов в будущем.
bleepingcomputer.com
✔️ OpenAI представила Sora: новую модель для создания видеороликов по текстовому описанию.
Компания OpenAI на онлайн-стриме анонсировала запуск Sora – инструмента для создания видео по текстовому запросу. Sora доступна подписчикам ChatGPT Plus и Pro, с ограничениями по региону (недоступна на территории ЕС и Великобритании), количеству генераций и качеству видео. Plus-пользователи смогут создавать до 5 видео в месяц длиной до 5 секунд в разрешении до 720p.
Pro-подписка позволяет сгенерировать до 500 коротких видео длиной до 20 секунд в разрешении до 1080p. Sora предлагает различные инструменты для редактирования и управления процессом создания видео: Storyboard для покадровой режиссуры и функции для добавления начала, концовки и объединения нескольких видео.
openai.com
@ai_machinelearning_big_data
#news #ai #ml
🌟 EXAONE 3.5: Набор инструктивных моделей от LG AI.
LG AI Research опубликовала 3 новые инструктивные двуязычные (английский и корейский) модели EXAONE 3.5 с контекстным окном в 32 тыс. токенов:
🟠2.4B – компактная модель для использования на устройствах;,
🟠7.8B – универсальная модель;
🟢32B – высокопроизводительная модель для задач, требующих максимальной эффективности.
Разработчики EXAONE 3.5 улучшили эффективность обучения моделей. На этапе предварительного обучения из наборов данных удалялись дубликаты и личная информация, что позволило повысить качество ответов моделей и оптимизировать использование ресурсов. На этапе постобработки применялись методы SFT и DPO, чтобы улучшить способность моделей понимать инструкции и предпочтения пользователей.
Для повышения надежности оценки производительности EXAONE 3.5 был проведен тщательный процесс деконтаминации. Метод деконтаминации был взят из глобальной модели, а его эффективность оценивалась путем многократного сравнения обучающих данных с тестовыми наборами данных.
К каждой модели, LG AI выпустил квантованные версии в форматах AWQ и GGUF.
⚠️ EXAONE 3.5 - инструктивные модели, поэтому рекомендуется использовать системные промпты, представленные в примере кода инференса.
▶️Пример инференса EXAONE-3.5-7.8B-Instruct на Transformers:
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "%Prompt%"
messages = [
{"role": "system", "content": "You are EXAONE model from LG AI Research, a helpful assistant."},
{"role": "user", "content": prompt}
]
input_ids = tokenizer.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_tensors="pt"
)
output = model.generate(
input_ids.to("cuda"),
eos_token_id=tokenizer.eos_token_id,
max_new_tokens=128,
do_sample=False,
)
print(tokenizer.decode(output[0]))
🌟 AQLM․rs: сокращаем расходы на нейросети
Исследователь Яндекса разработал сервис для запуска языковых моделей с 8 млрд параметров на пользовательских девайсах.
Автор написал инференс модели Llama 3.1 8B, работающий в браузере на WebAssembly без использования GPU. Для этого он применил технологию сжатия нейросетей AQLM, которую разработала команда Yandex Research вместе с университетами ISTA и KAUST.
Для примера, скорость ответов нейросети на MacBook Pro M1 составила 1,5 токена в секунду или 3–4 символа.
🟡Статья
🖥Github
@ai_machinelearning_big_data
#AI #ML #LLM
Погружаемся в ML вместе на Data Dojo!
Собираемся уже 17 декабря, чтобы послушать три доклада от спикеров из разных сервисов Яндекса:
🔸 Илья Дьяков из команды Автономного транспорта разберёт задачку с Yandex ML Cup. Она связана с симуляторами, которые предсказывают дорожное движение и тестируют ML-модели до того, как они попадут в настоящие автомобили.
🔸 Артемий Вешкин из Яндекс Музыки тоже рассмотрит один из этапов Yandex ML Cup. И расскажет, как разработать решение, которое будет отличать кавер-версии от оригиналов песен.
🔸 Николай Карпачёв из команды Переводчика расскажет, как ребята поучаствовали в соревновании по качеству перевода на WMT24. В главном треке ребята попали в топ-5!
📅 Зарегистрироваться и узнать подробности можно тут.
Ждём вас!
Реклама. ООО "Яндекс", ИНН 7736207543.
⚡️ TRELLIS: универсальная модель для генерации 3D-контента от Microsoft.
TRELLIS - модель для создания высококачественных 3D-объектов на основе текстового промпта или изображения с помощью унифицированного представления Structured LATent (SLAT), которое декодирует данные в форматы: Radiance Fields, 3D-гауссианы и полигональные сетки.
SLAT обладает универсальностью, используя комбинацию из разреженной 3D-сетки и плотных визуальных признаков, извлеченных моделью DINOv2 из входного изображения.
TRELLIS использует модифицированные rectified flow transformers, адаптированные для работы с SLAT. Обучение набора моделей TRELLIS, размерами до 2 млрд. параметров, выполнялось на датасете из 500 тыс. разнообразных 3D-объектов.
Пока в открытый доступ опубликована только Image-to-3D версия - TRELLIS-image-large с 1.2 млрд. параметров. Остальные вариации модели для генерации 3D по тексту: TRELLIS-text-base (342М), TRELLIS-text-large (1.1В) и TRELLIS-text-xlarge (2В) и код для их трейна будут представлены позже (сроки не указаны).
⚠️ Для локального запуска TRELLIS-image-large рекомендуется NVIDIA GPU с VRAM 16GB или больше.
▶️Установка и запуск c WebUI (Gradio):
# Clone repo
git clone --recurse-submodules https://github.com/microsoft/TRELLIS.git
cd TRELLIS
# Create conda env and install dependencies
. ./setup.sh --new-env --basic --flash-attn --diffoctreerast --spconv
--mipgaussian --kaolin --nvdiffrast
# Install web demo via Gradio
. ./setup.sh --demo
# Run WebUI
python app.py
✔️ Уязвимости в инструментах машинного обучения.
Уязвимости, обнаруженные компанией JFrog в популярных инструментах машинного обучения с открытым исходным кодом: MLflow, H2O, PyTorch и MLeap, позволяют злоумышленникам использовать клиентские библиотеки машинного обучения, которые работают с Safetensors.
Взлом клиента машинного обучения позволяет получить доступ к учетным данным реестра моделей и внедрить вредоносный код. Среди обнаруженных уязвимостей - недостаточная санитизация в MLflow (CVE-2024-27132), небезопасная десериализация в H2O (CVE-2024-6960), проблема с обходом пути в PyTorch и уязвимость Zip Slip в MLeap (CVE-2023-5245).
thehackernews.com
✔️OPENAI представили reinforcement finetuning для o1 (RFT).
Этот метод отличается от обычного файнтюнинга (или файнтюнинга с учителем) тем, что он позволяет обучать модель думать определённым образом в конкретной области, важной для пользователя.
Подробнее
✔️ Apple планирует изменить конструкцию памяти iPhone для повышения производительности ИИ.
Компания планирует внедрить дискретную упаковку памяти в iPhone, начиная с 2026 года, чтобы повысить производительность ИИ на устройстве. Samsung, поставщик компонентов памяти Apple, уже начал проводить исследования, чтобы удовлетворить запрос Apple. Сейчас iPhone использует упаковку типа «пакет-на-пакете» (PoP), где DRAM LPDDR размещается непосредственно на "системе-на-кристалле" (SoC).
Переход на дискретную упаковку позволит увеличить количество контактов ввода-вывода, повышая скорость передачи данных и количество параллельных каналов данных. Это улучшит пропускную способность памяти и возможности ИИ и также улучшает теплоотвод. Однако это изменение может потребовать уменьшения размера SoC или аккумулятора, а также увеличить энергопотребление и задержку.
macrumors.com
✔️ Google DeepMind представит более 100 научных работ на NeurIPS 2024.
Google DeepMind примет участие в 38-й ежегодной конференции по нейронным системам обработки информации (NeurIPS), которая пройдет с 10 по 15 декабря в Ванкувере, где представит более 100 новых научных работ по темам: агенты ИИ, генеративные медиа, инновационные подходы к обучению. В рамках конференции запланированы живые демонстрации Gemma Scope, ИИ для создания музыки, модели прогнозирования погоды, системы CAT3D и Android Control.
deepmind.google
✔️ PlayerUnknown представил 2 новые игры, основанные на машинном обучении.
Разработчик PlayerUnknown анонсировал две новые игры, основанные на технологиях Ai и ML: Preface: Undiscovered World и Prologue: Go Wayback.
Preface: Undiscovered World доступна в раннем доступе в Steam и представляет собой техническую демонстрацию процедурно генерируемых миров. Prologue: Go Wayback – это "выживалка", в которой погода и окружающая среда непосредственно влияют на исследование мира игроком. Обе игры служат «строительными блоками» для будущих проектов PlayerUnknown Productions и предназначены для сбора отзывов пользователей.
dualshockers.com
✔️ Китай представил сверхпроводящий чип с 504 кубитами.
Китай представил свой самый передовой квантовый компьютер «Tianyan-504» с 504-кубитным чипом «Xiaohong», разработанным в партнерстве с Китайской академией наук и компанией QuantumCTek. «Tianyan-504» устанавливает новый национальный рекорд, преодолевая порог в 500 кубитов, и конкурирует с IBM, по показателям производительности, времени жизни кубита и точности считывания. «Tianyan-504» будет интегрирован с квантовой облачной платформой China Telecom «Tianyan», запущенной в 2023 году, чтобы обеспечить глобальный доступ к возможностям квантовых вычислений. Платформа «Tianyan» уже привлекла более 12 миллионов посещений пользователей из более чем 50 стран.
thequantuminsider.com
@ai_machinelearning_big_data
#news #ai #ml
🌟 The Well: Масштабная коллекция физических симуляций для машинного обучения.
The Well – коллекция датасетов для машинного обучения, содержащая 15 ТБ данных численного моделирования различных физических систем. Коллекция состоит из 16 наборов данных из областей: биологии, гидродинамики, акустики, магнитогидродинамики, внегалактических субстанций и взрывы сверхновых.
Данные представлены в унифицированном формате HDF5, организованном в соответствии с общей спецификацией. Они сгенерированы на равномерных сетках и дискретизированы с постоянным временным шагом.
Файлы HDF5 содержат все доступные переменные состояния и пространственно-изменяющиеся коэффициенты в виде массивов NumPy в формате одинарной точности fp32. Доступны скалярные, векторные и тензорные поля, учитывая их различные свойства преобразования.
Каждый файл данных случайным образом разделен на обучающую, тестовую и валидационную выборки в соотношении 8:1:1. Детальное описание каждого набора данных представлено в таблицах, где указаны координатная система, разрешение снимков, количество временных шагов в траектории, общее количество траекторий в наборе данных, размер набора данных, время выполнения симуляций и используемое оборудование.
The Well предоставляет класс the_well
для Python, который позволяет загружать и использовать данные в процессе обучения моделей. Для удобства большинство наборов размещены на Hugging Face, что позволяет получать данные напрямую через интернет.
▶️ Установка и пример использования c HF:
# Create new venv
python -m venv path/to/env
source path/to/env/activate/bin
# Instal from repo
git clone https://github.com/PolymathicAI/the_well
cd the_well
pip install .
# Streaming from Hugging Face
from the_well.data import WellDataset
from torch.utils.data import DataLoader
trainset = WellDataset(
well_base_path="hf://datasets/polymathic-ai/",
well_dataset_name="active_matter",
well_split_name="train",
)
train_loader = DataLoader(trainset)
for batch in train_loader:
...
⚡️ PaliGemma 2: Новое семейство VLMs от Google.
PaliGemma 2 - обновление open-sorce VLM PaliGemma, основанное на семействе LLM Gemma 2. Семейство сочетает в себе кодировщик изображений SigLIP-So400m с спектром моделей Gemma 2, от 2B до 27B параметров. Модели PaliGemma 2 обучались в 3 этапа на трех разрешениях (224px², 448px² и 896px²).
PaliGemma 2 демонстрирует впечатляющие результаты в распознавании музыкальных нот, молекулярных структур и медицинских изображений. Модели справляются с распознаванием табличной структуры и созданием отчетов по рентгенограммам.
В задачах генерации длинных, детализированных аннотаций к изображениям PaliGemma 2 превосходит многие популярные VLM, несмотря на то, что она обучалась на значительно меньших наборах данных.
Для развертывания на устройствах без GPU могут использоваться квартованные версии PaliGemma 2. Тесты показали, что переход от 32-битной разрядности (f32) к 16-битной (bf16) или квантованным весам не приводит к заметному снижению качества.
В релиз вошли предварительно обученные модели 3B, 10B и 28B с разрешениями 224px, 448px, 896px, модели, настроенные на наборе данных DOCCI для создания аннотаций к изображениям и их версии для JAX/FLAX.
Процесс файнтюна PaliGemma 2 такой же, как и у предыдущей версии. Разработчики предоставляют скрипт и ipynb-блокнот для тонкой настройки модели или создания LoRA/QLoRA.
Создание LoRA модели PaliGemma 2 на половине валидационного сплита VQAv2 заняло полчаса на 3-х A100 с 80 ГБ VRAM. Результат можно найти здесь, а это ее демо.
▶️Пример инференса модели paligemma2-10b-ft-docci-448
на Transformers:
from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
from PIL import Image
import requests
model_id = "google/paligemma2-10b-ft-docci-448"
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id)
model = model.to("cuda")
processor = AutoProcessor.from_pretrained(model_id)
prompt = "<image>caption en"
image_file = "% link_to_target_file%"
raw_image = Image.open(requests.get(image_file, stream=True).raw).convert("RGB")
inputs = processor(prompt, raw_image, return_tensors="pt").to("cuda")
output = model.generate(**inputs, max_new_tokens=20)
print(processor.decode(output[0], skip_special_tokens=True)[len(prompt):])
✔️ Amazon представил линейку базовых моделей Nova.
На конференции AWS re:Invent в Лас-Вегасе Amazon представила Amazon Nova, свое собственное семейство базовых моделей, доступных исключительно через Amazon Bedrock. Модели Nova на 75% дешевле, чем лучшие модели в своих классах в Bedrock.
Модели Nova доступны с функцией дистилляции, глубоко интегрированы с базами данных Bedrock, что позволяет пользователям использовать RAG для построения инференса на основе собственных данных. Семейство Nova покрывает все популярные модальности: обработка текста, генерация изображений, синтез видео и понимание мультимедийного контента.
aboutamazon.com
✔️ Создатели NotebookLM уходят из Google, чтобы основать собственный стартап.
Три ключевых участника команды NotebookLM объявили о своем уходе из Google, чтобы основать новый стартап, который пока находится в режиме полной секретности. Бывший руководитель команды Райза Мартин намекнула, что он будет ориентирован на потребителей. Мартин подчеркнула стремление команды использовать новейшие модели ИИ для создания продукта, полезного для обычных людей.
Пока неясно, будет ли новый проект фокусироваться на функциях, которые сделали NotebookLM популярным или же команда выберет совершенно новое направление. Несмотря на раннюю стадию развития, стартап уже получил значительную поддержку со стороны других основателей, инвесторов и специалистов.
techcrunch.com
✔️ Исследователь по безопасности ИИ покидает OpenAI.
Ресечер по безопасности Рози Кэмпбелл уходит из OpenAI, ссылаясь на изменения в компании за последний год, которые вызывают у нее беспокойство, особенно после ухода Майлза Брандейджа, бывшего руководителя отдела общей готовности к ИИ, и роспуска его команды.
Рози не устраивает то, что текущий подход OpenAI к безопасности может быть недостаточным для мощных систем ИИ, которые, как ожидается, появятся в этом десятилетии. Она считает, что миссия OpenAI - не просто «создать общий ИИ», но и гарантировать, что он «принесет пользу человечеству».
rosiecampbell.xyz
✔️ MALT: метод совместного обучения языковых моделей для задач рассуждения.
MALT (Multi-Agent LLM Training) - метод, позволяющий совместно обучать несколько LLM для решения сложных задач, требующих рассуждения. В основе MALT лежит последовательная многоагентная система, состоящая из генератора, верификатора и модели уточнения, которые работают над решением задачи итеративно.
Для обучения моделей MALT использует синтетические данные, сгенерированные с помощью процесса расширения траекторий. Этот процесс позволяет создавать большое количество обучающих примеров, которые используются для дообучения каждой модели с помощью SFT и DPO. Результаты оценки MALT, использующий модели Llama 3.1 8B, на бенчмарках MATH, GSM8k и CSQA показали, что метод достигает улучшений на 14,14%, 7,12% и 9,40% соответственно по сравнению с базовой моделью.
huggingface.co
✔️ Рост фондового рынка США в 2024 году достиг уровня эпохи «доткомов».
Индекс S&P 500, вероятно, завершит 2024 год с ростом почти на 27%, установив в этом году 50 рекордов. Этот впечатляющий рост следует за скачком на 24,2% в 2023 году, что делает двухлетний период беспрецедентным со времен бума доткомов.
В отличие от эпохи доткомов, нынешний рост обусловлен стремительным взлетом цен акций компаний, работающих в сфере ИИ. Например, стоимость Nvidia выросла более чем вдвое после утроения в 2023 году. Экономика США, несмотря на недавнюю рецессию, связанную с пандемией COVID-19, пока избегает нового витка падения, которую многие на Уолл-стрит считали неизбежной после повышения основной процентной ставки до 20-летнего максимума.
apnews.com
@ai_machinelearning_big_data
#news #ai #ml
⚡️ OpenAI выпустили модель o1-Pro
Цена - 200 долларов в месяц.
Новая модель OpenAI значительно превосходит предыдущие версии задачах кодинга и математике.
стрим: https://www.youtube.com/watch?v=rsFHqpN2bCM
@ai_machinelearning_big_data
#openai #chatgpt
Подвели итоги AIDAO – международной олимпиады по ИИ и анализу данных для студентов
С 30 ноября по 2 декабря в Москве прошел последний этап олимпиады Artificial Intelligence and Data Analysis Olympiad (AIDAO) от Яндекс Образования и НИУ ВШЭ. В финале студенты обучали ИИ-модель с помощью компьютерного зрения обнаруживать неисправности на кузове и в салоне машин.
Задачу разработали в службе машинного обучения Яндекс Такси. Участникам дали 32 часа и реальный датасет — более 200 тысяч фотографий машин из базы сервиса. Теперь специалисты оценят возможность внедрить созданные решения в бизнес.
Трем лучшим командам вручили денежные вознаграждения: 600 тысяч рублей за первое место, 450 тысяч – за второе и 300 тысяч – за третье. Также победители получат шанс стать частью ML-команды Яндекса.
@ai_machinelearning_big_data
#ai #science #news
🌟 Динамическое 4-битное квантование VLM с повышенной точностью от Unsolth .
Unsloth представил практический метод динамического 4-битного квантования VLM, который решает проблему снижения точности популярных алгоритмов квантования AWQ, Bitsandbytes, GPTQ и HQQ.
В эксперименте использовался Bitsandbytes в качестве основы для всех линейных слоев, но квантование определенных параметров было динамически отключено. Этот подход позволил добиться значительного повышения точности при использовании всего на 10% больше VRAM по сравнению с стандартным 4-битным квантованием Bitsandbytes.
В результате, этот метод позволяет сохранить точность модели, близкую к 16-битной точности, при значительном сокращении размера модели.
Тестирование на VL-моделях Llama 3.2 Vision, Qwen2 Vision и Pixtral, показали значительные преимущества по сравнению со стандартным 4-битным квантованием. Например, квантование Qwen2 Vision 2B до 4 бит приводило к полной поломке модели, в то время как метод динамического квантования позволял восстановить точность при увеличении использования памяти всего на 450 МБ.
Аналогичным образом, получилось восстановить точность Llama 3.2 Vision 11B и Pixtral 12B, которые также деградировали на стандартном 4-битном квантовании.
▶️В открытый доступ на HF опубликованы модели, участвующие в исследовании:
🟢Llama-3.2-11B-Vision-Instruct-unsloth-bnb-4bit (7.23 GB)
🟢Llama-3.2-11B-Vision-unsloth-bnb-4bit (7.23 GB)
🟠Qwen2-VL-2B-Instruct-unsloth-bnb-4bit (1.81 GB)
🟠Qwen2-VL-7B-Instruct-unsloth-bnb-4bit (6.3 GB)
🟠QwQ-32B-Preview-unsloth-bnb-4bit
🟢Pixtral-12B-2409-unsloth-bnb-4bit (8.42GB)
⚠️ К каждой модели в Model Card можно найти блокнот для запуска в Google Collab и созданные сообществом GGUF-версии.
📌Лицензирование моделей:
🟠Семейство Llama: Llama 3.2 Community License Agreement
🟢Семейство Qwen: Apache 2.0 License.
🟢Pixtral: Apache 2.0 License.
🟡Статья
🟡Набор моделей
🟡Сообщество в Discord
@ai_machinelearning_big_data
#AI #ML #VLM #Unsolth #Quantization
✔️ Google DeepMind представил новую модель прогнозирования погоды GenCast.
GenCast – ансамблевая диффузионная модель для прогнозирования погоды и рисков экстремальных погодных условий, обеспечивающая более быстрые и точные прогнозы на срок до 15 дней. GenCast была обученная на 40-летнем архиве исторических метеорологических данных ERA5 от ECMWF.
Модель, работающая на Google Cloud TPU v5, превосходит лидирующую систему прогнозирования ECMWF ENS по точности прогнозов на 97,2% в 1320 различных комбинациях тестируемых параметров. GenCast демонстрирует способность прогнозировать экстремальные погодные явления: периоды сильной жары и холода, сильные ветры и траектории тропических циклонов. Google DeepMind планирует выпустить код, веса и прогнозы модели в открытый доступ, чтобы поддержать метеорологическое сообщество.
deepmind.google
✔️ Япония планирует использовать ИИ для борьбы с онлайн-пиратством манги и аниме.
Власти Японии планируют внедрить систему ИИ для борьбы с пиратскими сайтами, предлагающими мангу и аниме, которые ежегодно обходятся ей в миллиарды долларов упущенной выгоды. По данным японских издателей, существует не менее 1000 веб-сайтов, незаконно предлагающих бесплатную загрузку всемирно известных графических романов манга.
В рамках пилотной программы стоимостью 300 млн. иен (2 млн. долл. США) ИИ будет сканировать интернет в поисках сайтов, занимающихся пиратством книг манги и аниме, с использованием систем обнаружения изображений и текста. Инициатива включена в дополнительный бюджетный запрос агентства на текущий финансовый год. Если проект окажется успешным, его применят и к другому незаконно распространяемому контенту.
japantimes.co.jp
✔️ Генеративная модель видео Veo от Google cтала доступна для бизнес-клиентов.
Veo теперь доступна для предприятий, которые хотят использовать её в процессе создания контента, в предварительной версии на платформе Google Vertex AI. Veo способна генерировать видео высокого качества с разрешением 1080p в различных визуальных и кинематографических стилях, используя текстовые или графические подсказки.
Хотя первоначально сгенерированные клипы могли быть «чуть больше 60 сек.», Google не указывает ограничений длины для предварительной версии. Встроенные средства защиты Veo предназначены для предотвращения создания вредоносного контента или нарушения авторских прав, и все, что создается Veo, встраивается технологией SynthID от DeepMind - невидимым цифровым водяным знаком, который, по словам Google, может «уменьшить проблемы с дезинформацией и неправильным приписыванием».
theverge.com
✔️ NVIDIA представила новейшие решения в области ИИ, робототехники и квантовых вычислений на AWS.
NVIDIA анонсировала на конференции AWS re:Invent доступность платформы NVIDIA DGX Cloud на AWS Marketplace Private Offers, решения для жидкостного охлаждения серверов ИИ в дата-центрах AWS, которые повысят эффективность и производительность.
Компания расширит возможности NVIDIA Omniverse на AWS с помощью Isaac Sim, работающего на инстансах Amazon EC2 G6e с GPU NVIDIA L40S. NVIDIA также интегрирует CUDA-Q с Amazon Braket для упрощения квантовых вычислений, тем самым предоставив разработчикам платформу для создания гибридных квантово-классических приложений.
blogs.nvidia.com
✔️ Physical Intelligence выпустила новую базовую модель ИИ для робототехники Pi-Zero.
Physical Intelligence представила π0 (pi-zero), универсальную базовую модель ИИ для роботов. Pi-zero основана на VLM PaliGemma, которая была дополнительно обучена на пользовательском наборе данных, собранном с 7 различных роботов, выполняющих 68 задач, и на наборе Open X-Embodiment.
Полученная модель может воспринимать команды на естественном языке и выполнять задачи "на элементарном уровне". Physical Intelligence сравнили производительность pi-zero с двумя базовыми моделями, OpenVLA и Octo, по 5 различным задачам, включая складывание белья и уборку со стола; pi-zero добилась "значительных улучшений" по сравнению с базовыми моделями.
infoq.com
🪐 Новый датасет: 100ТБ астрономических данных
@ai_machinelearning_big_data
#news #ai #ml