ai_machinelearning_big_data | Технологии

Telegram-канал ai_machinelearning_big_data - Machinelearning

27349

Самая актуальная информация из мира ML, Нейронных сетей,DI По всем вопросам- @haarrp @itchannels_telegram - 🔥 best it channels @pythonl - 🐍 @machinee_learning -chat @ArtificialIntelligencedl - AI @datascienceiot - ml 📚 @machinelearning_ru ml

Подписаться на канал

Machinelearning

🔥 Deep Learning Tuning Playbook

This document is for engineers and researchers (both individuals and teams) interested in maximizing the performance of deep learning models.

Этот репозиторий-книга от специалистов Google Research
с практическими советами по максимальному повышению производительности моделей глубокого обучения.

🖥 Github
📌Reddit

@ai_machinelearning_big_data

Читать полностью…

Machinelearning

🎧 Msanii: High Fidelity Music Synthesis on a Shoestring Budget

Model combines the expressiveness of mel spectrograms, the generative capabilities of diffusion models, and the vocoding capabilities of neural vocoders.

Новая модель на основе диффузии для эффективного синтеза длинной музыки высокого качества.

pip install -q git+https://github.com/Kinyugo/msanii.git

🖥 Github: https://github.com/kinyugo/msanii

⭐️ Demo: https://kinyugo.github.io/msanii-demo/

⭐️ Colab: https://colab.research.google.com/github/Kinyugo/msanii/blob/main/notebooks/msanii_demo.ipynb

✅️ Paper: https://arxiv.org/abs/2301.06468

🤗Hugging face: https://huggingface.co/spaces/kinyugo/msanii

@ai_machinelearning_big_data

Читать полностью…

Machinelearning

👨‍🎓 CS224W: Machine Learning with Graphs Free Course from Stanford

Topics include: representation learning and Graph Neural Networks; algorithms for the World Wide Web; reasoning over Knowledge Graphs; influence maximization; disease outbreak detection, social network analysis.

Шикарный бесплатный курс от Стенфорда, с которым вы изучите структуру графов и их особенности и применения в мо, научитесь строить графовые нейронные сети. Новые лекции, колабы и слайды выходят по вторникам и четвергам.

🔥 Course 2023
📌 Video Lectures 2021
🤗Intro to Graph Machine Learning

ai_machinelearning_big_data

Читать полностью…

Machinelearning

🖼 Image Similarity with Hugging Face Datasets and Transformers

In this post, you'll learn to build an image similarity system wich Transformers.

Полезная статья, с которой вы создадите систему поиска сходства изображений с помощью Transformers. Можно немного попрактиковаться и попробовать другие модели.

🤗 Huggingface
🖥 Github
🖥 Colab

@ai_machinelearning_big_data

Читать полностью…

Machinelearning

🔥 Neural Deferred Shading

Новая быстрая многоракурсная 3D-реконструкция с произвольными объектами и настраиваемым освещением.

🖥 Github: github.com/fraunhoferhhi/neural-deferred-shading

⭐️ Project: fraunhoferhhi.github.io/neural-deferred-shading

✅️ Paprer: https://mworchel.github.io/assets/papers/neural_deferred_shading_with_supp.pdf

Pyremesh : https://github.com/sgsellan/botsch-kobbelt-remesher-libigl

❤️Video: https://www.youtube.com/watch?v=nIqmuylmpFY

ai_machinelearning_big_data

Читать полностью…

Machinelearning

🔊 Audio-Visual Efficient Conformer for Robust Speech Recognition

Улучшенный метод чтения по губам, с помощью архитектуры Conformer Connectionist Temporal Classification (CTC) для обработки аудио и видео.

🖥 Github
✔️ Paper
🔥Notebook
🚀 Models

@ai_machinelearning_big_data

Читать полностью…

Machinelearning

🔥 Yolo8 is coming!

На github вылложили веса.
Обновилась документация.

🖥 Github
✔️ Docs
🖥 Colab

@ai_machinelearning_big_data

Читать полностью…

Machinelearning

🚀 ConvNeXt V2

Meta выпустила ConvNeXt V2 на PyTorch для 8 видов моделей (Atto, Femto, Pico, Nano, Tiny, Base, Large, Huge), код обученной модели, настройки и веса (преобразованные из весов JAX, обученных на TPU) для ConvNeXt V2. х. ConvNets работал лучше, чем Трансформеры для задач компьютерного зрения, а ConvNeXt V2, значительно превосходит производительность сетей ConvNet на тестах.

🖥 Github: https://github.com/facebookresearch/convnext-v2

⭐️ Paper: https://arxiv.org/abs/2301.00808v1

Dataset: https://paperswithcode.com/dataset/coco

@ai_machinelearning_big_data

Читать полностью…

Machinelearning

🚛 The Forward-Forward Algorithm: Some Preliminary Investigations

Цель этой статьи — представить новую процедуру обучения для нейронных сетей и продемонстрировать, что она работает хорошо на нескольких небольших задачах и заслуживает внимания для дальнейшего изучения. Алгоритм Forward-Forward заменяет метод прямого распространения и метод обратного распространения двумя прямыми проходами, один с положительными (то есть реальными) данными, а другой с отрицательными данными, которые сгенерированы самой сетью. Forward-Forward не требует вычисления функции потерь по отношению к параметрам сети. Вместо этого каждый шаг оптимизации может выполняться локально, а веса каждого слоя могут обновляться сразу же после того, как слой отработал.

git clone https://github.com/nebuly-ai/nebullvm.git
cd nebullvm/apps/accelerate/forward_forward


🖥 Github: https://github.com/nebuly-ai/nebullvm/tree/main/apps/accelerate/forward_forward

⭐️ Paper: https://arxiv.org/abs/2212.13345v1

Dataset: https://paperswithcode.com/dataset/cifar-10

@ai_machinelearning_big_data

Читать полностью…

Machinelearning

✅️ JRBD: Egocentric Perception of Humans

Стэнфорд JRDB-Pose: набор размеченных данных с более чем 600 000 позами тел.

⭐️ Dataset: https://jrdb.erc.monash.edu/

🖥 Github: https://github.com/JRDB-dataset/jrdb_toolkit/

JRDB-Pose: https://jrdb.erc.monash.edu/dataset/pose#toolkit

Paper: arxiv.org/pdf/1910.11792.pdf

@ai_machinelearning_big_data

Читать полностью…

Machinelearning

❄️ ClimateNeRF: Extreme Climate NeRF

Climate NeRF — позволяет визуализировать последствия изменения климата. ClimateNeRF может генерировать реалистичные погодные эффекты, включая смог, снег и наводнение. Результаты можно контролировать с помощью физически значимых переменных, таких как уровень воды и количества осадков.

Project: https://climatenerf.github.io

📃 Paprer: arxiv.org/pdf/2211.13226.pdf

📊 FastPhotoStyle: https://github.com/NVIDIA/FastPhotoStyle

@ai_machinelearning_big_data

Читать полностью…

Machinelearning

🖥 Introduction To Functional Analysis

Шикарный бесплатный курс от MIT по Функциональному анализу. 23 лекции и конспекты.

📃 Курс
📊 Материалы
🖥 Видео

@ai_machinelearning_big_data

Читать полностью…

Machinelearning

🖥 PICARD: Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models

Интересная модель, которая переводит запросы на естественном языке в запрос SQL.

$ git clone git@github.com:ElementAI/picard.git
$ cd picard
$ git submodule update --init --recursive

🖥 Github: https://github.com/ServiceNow/picard

Paprer: https://arxiv.org/abs/2109.05093v1

✔️ Dataset: https://paperswithcode.com/dataset/spider-1

@ai_machinelearning_big_data

Читать полностью…

Machinelearning

⭐️ Generalized Decoding for Pixel, Image, and Language

X-Decoder - первая модель, которая поддерживает все типы сегментации изображений, способной эффективно решать различные задачи CV и VL.

🖥 Github: https://github.com/microsoft/X-Decoder

🤗 Hugging Face Demo: https://huggingface.co/spaces/xdecoder/Demo

⭐️ Project: https://x-decoder-vl.github.io/

Paprer: https://arxiv.org/pdf/2212.11270.pdf

✔️ Dataset: https://paperswithcode.com/dataset/visual-genome

@ai_machinelearning_big_data

Читать полностью…

Machinelearning

⭐️ BLOOM+1: Adding Language Support to BLOOM for Zero-Shot Prompting

Модель BLOOM — это большая многоязычная модель с открытым исходным кодом, способная к обучению с нуля, предварительно обученная на 46 языках.

🖥 Github: https://github.com/bigscience-workshop/multilingual-modeling

Paprer: https://arxiv.org/abs/2212.09535v1

✔️ Dataset: https://paperswithcode.com/dataset/xp3

@ai_machinelearning_big_data

Читать полностью…

Machinelearning

Multiview Compressive Coding for 3D Reconstruction

Multiview Compressive Coding (MCC), learns to compress the input appearance and geometry to predict the 3D structure by querying a 3D-aware decoder

MCC — это новый подход к 3D-реконструкции по одному изображению RGB-D от Meta .

pip install h5py omegaconf submitit

🖥 Github: https://github.com/facebookresearch/mcc

⭐️ Project: https://mcc3d.github.io/

✅️ Paper: https://arxiv.org/abs/2301.08247

⭐️ Dataset: https://github.com/facebookresearch/MCC/blob/main/DATASET.md

@ai_machinelearning_big_data

Читать полностью…

Machinelearning

💬 GLIGEN: Open-Set Grounded Text-to-Image Generation

GLIGEN’s zero-shot performance on COCO and LVIS outperforms that of existing supervised layout-to-image baselines by a large margin. Code comming soon.

GLIGEN новый подход, который основывается на существующих предварительно обученных моделях генерации текста из изображения и расширяет их функциональность. GLIGEN значительно превосходит все существующие модели.

⭐️ Project: https://gligen.github.io/

⭐️ Demo: https://aka.ms/gligen

✅️ Paper: https://arxiv.org/abs/2301.07093

🖥 Github: https://github.com/gligen/GLIGEN

@ai_machinelearning_big_data

Читать полностью…

Machinelearning

AutoAvatar: Autoregressive Neural Fields for Dynamic Avatar Modeling

Autoregressive approach for modeling dynamically deforming human bodies by Meta.

AutoAvatar — проект от Meta для моделирования динамически деформирующихся человеческих тел непосредственно из необработанных сканов.

🖥 Github: github.com/facebookresearch/AutoAvatar

⭐️ Project: zqbai-jeremy.github.io/autoavatar

✅️ Paprer: arxiv.org/pdf/2203.13817.pdf

Dataset: https://amass.is.tue.mpg.de/index.html

⭐️ Video: https://zqbai-jeremy.github.io/autoavatar/static/images/video_arxiv.mp4

ai_machinelearning_big_data

Читать полностью…

Machinelearning

📚 Free Book Multimodal Deep Learning 2023

This book is the result of a student seminar for Master Statistics and Master Data Science at the LMU in the summer semester 2022

Полезная книга , которая поможет разобраться с мультимодальными моделями общего назначения, изучить их архитектуру, работу и применение, в том числе в
генеративном искусстве.

📘 Book
🖥 Github
Reading list

@ai_machinelearning_big_data

Читать полностью…

Machinelearning

😫 Memories are One-to-Many Mapping Alleviators in Talking Face Generation

Новый проект от Microsoft, реалистичная генерация говорящего аватара ​по входным аудиодорожкам.
MemFace обеспечивает наилучшее качество с большим отрывом.

🖥 Project
📃 Paper
📊Video

ai_machinelearning_big_data

Читать полностью…

Machinelearning

🔥 MIT Introduction to Deep Learning

2023 Program has started!

Сегодня стартует бесплатный курс от MIT Intro to DL 2023 — один из самых лаконичных, открытых курсов по искусственному интеллекту, который охватывает основные методы глубокого обучения, архитектуры инс, статистику.

🚀 Course
✔️ Course 2022

@ai_machinelearning_big_data

Читать полностью…

Machinelearning

💫 PACO: Parts and Attributes of Common Objects

Meta опубликовала огромный датасет. PACO — это набор данных, содержащий 641 000 аннотированных объектов и их и частей .

🖥 Github
⭐️ Paper
Project

@ai_machinelearning_big_data

Читать полностью…

Machinelearning

⚡️ MVTN: Learning Multi-View Transformations for 3D Understanding

Библиотека Pytroch для классификации, генерации и сегментации 3D объектов.

🖥 Github: https://github.com/ajhamdi/mvtorch

⭐️ Paper: https://arxiv.org/abs/2212.13462v1

Dataset: https://paperswithcode.com/dataset/modelnet

Сlassification example: https://github.com/ajhamdi/mvtorch/blob/main/docs/tutorials/classification.ipynb

➡️ Segmentation example: https://github.com/ajhamdi/mvtorch/blob/main/docs/tutorials/segmentation.ipynb

@ai_machinelearning_big_data

Читать полностью…

Machinelearning

⭐️ Orion

Проект с открытым исходным кодом от Data до AI Lab от MIT.
Orion — это библиотека машинного обучения, созданная для обнаружения аномалий во временных рядах.


pip install orion-ml

🖥 Github: https://github.com/sintel-dev/orion

⭐️ Notebooks: https://drive.google.com/drive/folders/1FAcCEiE1JDsqaMjGcmiw5a5XuGh13c9Q?usp=sharing

Paper: https://arxiv.org/abs/2212.13558v1

Docs: https://sintel.dev/Orion/

Datalab: https://dai.lids.mit.edu/

@ai_machinelearning_big_data

Читать полностью…

Machinelearning

🥼Neural Cloth Simulation

Самый продвинутый ИИ для анимации и генерации одежды.

🖥 Github: https://github.com/hbertiche/NeuralClothSim

⭐️ Project: https://hbertiche.github.io/NeuralClothSim/

✅️ Paprer: arxiv.org/pdf/2211.13226.pdf

Video: https://youtu.be/6HxXLBzRXFg

@ai_machinelearning_big_data

Читать полностью…

Machinelearning

Уже больше 70 лет биологи исследуют состояние Байкала: берут пробы воды в одной и той же точке и вручную ведут подсчет микроорганизмов. Этот метод не менялся с 1945 года. Теперь учёным помогают алгоритмы машинного обучения — они анализируют виды и формы планктона и экономят время специалистов.

Нейросеть Yandex Cloud стала доступна в опенсорсе — то есть и сам алгоритм, и датасет можно использовать в исследованиях других водоемов по всему миру. Читайте подробнее в блоге.

Посмотрите короткометражку о том, как нейросети учились различать байкальских рачков, а специалисты из разных областей — понимать друг друга

Читать полностью…

Machinelearning

🎧 Riffusion App

Riffusion — это интересный проект для создания музыки в реальном времени, основанный на stable diffusion.


🖥 Github: https://github.com/riffusion/riffusion-app

🖥 Colab: https://colab.research.google.com/drive/1FhH3HlN8Ps_Pr9OR6Qcfbfz7utDvICl0

Model: https://huggingface.co/riffusion/riffusion-model-v1

🖥 Demo: https://huggingface.co/spaces/fffiloni/spectrogram-to-music

@ai_machinelearning_big_data

Читать полностью…

Machinelearning

🌐 3D Highlighter: Localizing Regions on 3D Shapes via Text Descriptions

3D Highlighter способен определять семантические области на 3D объектах, используя текст в качестве входных данных.

🖥 Github: https://github.com/threedle/3DHighlighter

⭐️ Project: https://threedle.github.io/3DHighlighter/

Paprer: https://arxiv.org/abs/2212.11263

@ai_machinelearning_big_data

Читать полностью…

Machinelearning

🔥 Scalable Diffusion Models with Transformers (DiT)

Новый класс моделей диффузии, основанный на архитектуре трансформеров.Модели DiT-XL/2 не только обладают хорошей масштабируемостью, но и превосходят все предшествующие диффузионные модели на тестах.

git clone https://github.com/facebookresearch/DiT.git

🖥 Github: https://github.com/facebookresearch/DiT

🖥 Colab: http://colab.research.google.com/github/facebookresearch/DiT/blob/main/run_DiT.ipynb

⭐️ Project: https://www.wpeebles.com/DiT

Paprer: http://arxiv.org/abs/2212.09748

✔️ Dataset: https://paperswithcode.com/dataset/imagenet

@ai_machinelearning_big_data

Читать полностью…

Machinelearning

Хайп вокруг темы метавселенных дал большой импульс рынку VR-устройств, поскольку для метавселенных нужные погружающие пользователей интерфейсы. А лучшая на сегодня технология, которая выполняет такую функцию, — это виртуальная реальность.

Поэтому в этом году компании анонсировали несколько любопытных разработок. Например, автономные VR-устройства PICO 4, в которые инвестирует ByteDance и которые уже доступны для потребителей, а также вторую версию шлема PlayStation — PS VR2, он поступит на рынок в феврале 2023.

На российском рынке VR и AR решений в 2022 году произошло осознание, что может произойти ситуация «выпадения» технологий — в том числе, и критически важных. К таким относятся инструменты для разработки, например, игровые движки, которыми активно пользуются корпорации для создания симуляторов и тренингов. Те из них, которые близки к госсектору или компаниям, включенным в санкционные списки, уже находятся в зоне риска блокировки инструментов.

В связи с этим, среди участников рынка аудиовизуального производства и игровой разработки, государства и институтов развития активно обсуждается идея замещения выпадающих технологий. Например, создание собственных инструментов: 2D и 3D редакторы, игровые движки, рендер-движки, инструменты композитинга и прочее. Такие решения могут быть созданы на базе Open Source решений, на базе уже существующих в РФ решений или с нуля.

🎧 Больше о проектах виртуальной реальности можно узнать в подкасте Алексея Каленчука — «Ныряем».

#ЭкспертыФонда

Читать полностью…
Подписаться на канал