📷 Powerful Multi-Task Transformers for Scene Understanding
TaskExpert, a novel multi-task mixture-of-experts model that enables learning multiple representative task-generic feature spaces and decoding task-specific features in a dynamic manner.
Мощные многозадачные модели трансформеров для анализа и понимания сцен.
🖥 Github: https://github.com/prismformore/multi-task-transformer
📕 Paper: https://arxiv.org/abs/2307.15324v1
🔗 State of art: https://paperswithcode.com/sota/monocular-depth-estimation-on-cityscapes-3d?p=joint-2d-3d-multi-task-learning-on-cityscapes
ai_machinelearning_big_data
👗 Fashion Matrix: Editing Photos by Just Talking
Hierarchical AI system called Fashion Matrix dedicated to editing photos by just talking.
Fashion Matrix объединяет различные визуальные и языковые модели и в комплексного ИИ-помощника в области моды.
Система состоит из трех модулей: Fashion Assistant, Fashion Designer и AutoMasker, которые используют LLM в качестве поддержки интеллектуальной обработки текста.
🖥 Github: https://github.com/Zheng-Chong/FashionMatrix
⭐️ Project:
📕 Paper: https://arxiv.org/abs/2307.13240
👁 Video: https://www.youtube.com/watch?v=1z-v0RSleMg&t=3s
⏩ Demo : https://3040fb6b6c32c3715e.gradio.live/
🔗 Dataset: https://paperswithcode.com/dataset/densepose
ai_machinelearning_big_data
⚡️Маст-хэв список для программистов, каналы с последними книжными новинками, библиотеками, разбором кода и актуальной информацией, связанной с вашим языком программирования.
Лучший способ получать свежие обновлении и следить за трендами в разработке.
Python: t.me/pythonl
C#: t.me/csharp_ci
C/C++/ t.me/cpluspluc
Машинное обучение: t.me/machinelearning_interview
Data Science: t.me/data_analysis_ml
Devops: t.me/devOPSitsec
Go: t.me/Golang_google
Базы данных: t.me/sqlhub
Rust: t.me/rust_code
Javascript: t.me/javascriptv
React: t.me/react_tg
PHP: t.me/phpshka
Android: t.me/android_its
Мобильная разработка: t.me/mobdevelop
Linux: t.me/+A8jY79rcyKJlYWY6
Big Data: t.me/bigdatai
Хакинг: t.me/linuxkalii
Java: t.me/javatg
💼 Папка с вакансиями: t.me/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.me/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.me/addlist/eEPya-HF6mkxMGIy
🎞 YouTube канал: uproger" rel="nofollow">https://www.youtube.com/@uproger
😆ИТ-Мемы: t.me/memes_prog
🇬🇧Английский: t.me/english_forprogrammers
Just wanted to share with you that CrunchDAO is organizing the ADIA Lab Market Prediction Competition with a 100 000 USD Prize pool!
Here is what we offer (on top of the 100 000$ Prize pool) for you to participate).
- 128$ (40$Crunch) if you score > 3.5
- 320$ (100$Crunch) if you score > 4
These rewards are paid in $Crunch (you can swap it against USDC whenever you want).
They are only intended for you and can only work if you register through this link : https://crunchdao.com/live/adialab
The challenge of the competition is to rank the investments from best to worst at each given date. The scoring function for the competition is based on Spearman's rank correlation, which measures how well the predicted ranking of the investments matches up with the actual ranking.
ANNOUNCING SDXL 1.0
The Stability AI team is proud to release as an open model SDXL 1.0, the next iteration in the evolution of text-to-image generation models.
Stability AI объявили о выпуске Stable Diffusion 1.0 XL, новой версии популярной модели для генерации изображений. SDXL 1.0 представляет собой базовую модель с 3,5B параметров и пайплайн с ансамблем моделей из 6,6B параметров.
💫 Announcement: https://stability.ai/blog/stable-diffusion-sdxl-1-announcement
🖥 Github: https://github.com/Stability-AI/generative-models
⭐️ Clip: https://clipdrop.co/stable-diffusion
ai_machinelearning_big_data
Думаете о международной карьере, но боитесь, что не хватит английского? Практикуйте его в разговорных клубах для IT-специалистов.
За пять дней вы:
- узнаете, как готовиться к собеседованию на английском
- попробуете использовать фреймворк STAR на примере собеседования
- потренируетесь вести дискуссию и вежливо отстаивать свою точку зрения
- получите подарки от Яндекс Практикума
Формат: закрытый телеграм-канал и два воркшопа в Zoom. В канале вы получите чек-листы и будете решать упражнения. На воркшопах — сможете попрактиковаться с преподавателем и другими студентами.
Ведущая: Василиса Шеромова. Преподаватель на курсах английского для работы в IT. Опыт преподавания: больше 10 лет. Пять лет работала менеджером по маркетингу в IT-компаниях.
❗️Как пройти техническое собеседование на ML-специалиста?
⚠️ Узнайте на примере mock-интервью с преподавателями курса «MLOps» в OTUS!
На открытом уроке вы сможете наблюдать один из этапов собеседования при найме ML-специалистов — ML System Design секцию.
👉 Для удачного прохождения этого этапа не достаточно только знания алгоритмов машинного обучения. Также проверяются навыки проектирования ML систем, которые могут успешно работать в промышленной среде.
Больше инструментов MLOps ждет вас на курсе. Обратите внимание: возможные способы оплаты обучения.
👉 РЕГИСТРАЦИЯ
https://otus.pw/oCXA/
Нативная интеграция. Информация о продукте www.otus.ru
IT — одна из самых высокооплачиваемых сфер. А освоить ее можно уже в школе, не дожидаясь поступления в университет. Никаких скучных лекций — только практика на реальных IT-проектах!
Московская школа программистов (МШП) обучает детей IT уже с третьего класса, так что к поступлению в вузы многие из них соответствуют уровню Junior и имеют свое портфолио для будущей работы.
Обучение в школе основано на университетской модели: дети изучают набор обязательных основных курсов, а со второго семестра могут выбрать спецкурсы по разным IT-направлениям и найти свою профессию!
Учиться можно очно и онлайн из любой точки мира.
Переходите по ссылке, чтобы подготовить ребенка к IT-карьере!
В подарок после регистрации – Курс английского языка для 5-10 классов.
Реклама. Рекламодатель ЧУ ДО "МОСКОВСКАЯ ШКОЛА ПРОГРАММИСТОВ". ИНН 9715290128. Erid: LdtCKYT95
🐋 FreeWilly, Large And Mighty Instruction Fine-Tuned Models
.
FreeWilly1 and FreeWilly2 set a new standard in the field of open access Large Language Models.
В freeWilly1 используется оригинальная базовая модель LLaMA 65B, которая была обучена на новом синтетически сгенерированном наборе данных с использованием технологии Supervised Fine-Tune (SFT) в стандартном формате Alpaca.
FreeWilly2 использует базовую модель LLaMA 2 70B и достигает качества, сравнимого с GPT-3.5.
⭐️ Post: https://stability.ai/blog/freewilly-large-instruction-fine-tuned-models
📌 FreeWilly1: https://huggingface.co/stabilityai/FreeWilly1-Delta-SafeTensor
📌 FreeWilly2: https://huggingface.co/stabilityai/FreeWilly1-Delta-SafeTensor
ai_machinelearning_big_data
Получите профессию NLP-инженера на онлайн-магистратуре “Анализ естественного языка в лингвистике и IT”. На программе вы будете учиться обучать нейросети, учить машины распознавать и анализировать человеческую речь и генерировать ответы.
●Программа ориентирована на обучение с нуля, технический "бэкграунд" не обязателен;
●Обучение очное, но в онлайн-режиме, а обучающимся полагаются студенческие льготы и отсрочка от армии;
●У вас будет доступ к суперкомпьютерному центру CYBERIA от ТГУ, с помощью которого вы сможете обучать нейросети и решать задачи NLP в режиме онлайн;
●А после обучения вы получите очный диплом ТГУ и готовое портфолио для дальнейшего трудоустройства;
●А благодаря господдержке первый год обучения стоит всего 280 р/мес!
Успейте записаться на бесплатный подготовительный курс: https://go.skillfactory.ru/ndod3w
Реклама - ООО «Скиллфкэтори»
Kra248FC3
Привет, Чемпион!
🏆 Хочешь покорить Kaggle и научиться выигрывать соревнования по анализу данных? Тогда курс "Введение в соревновательный Data Science" - это именно то, что тебе нужно!
🎯 Что ты получишь?
- Первый русскоязычный курс по соревновательному Data Science с максимальным количеством практики.
- Насыщенная программа, содержащая эффективные методы для выбивания максимального качества из твоих ML-моделей.
- Более 200 практических заданий, интервью с Kaggle Grand Masters.
- Большое русскоязычное коммьюнити 400+ студентов курса для совместного прохождения и участия в соревнованиях.
- Поддержка преподавателей и даже собственный мерч курса за успехи.
🚀 На канале курса проводим еженедельные открытые вебинары, на которых разбираем решения победителей чемпионатов и делаем обзоры предстоящих соревнований.
🔗 Подписывайся на TG канал, чтобы узнать подробности о курсе, а также следить за открытыми вебинарами и другими активностями.
🔥Скидка 10% по промокоду: TGLETO (Сработает только при переходе по ссылке)
💬 Text2Cinemagraph: Synthesizing Artistic Cinemagraphs from Text
Полностью автоматизированный метод Text2Cinemagraph для создания синемаграфов из текстового описания с учетом различных художественных стилей.
🖥 Github: https://github.com/text2cinemagraph/text2cinemagraph
🖥 Colab: https://colab.research.google.com/github/camenduru/AnimateDiff-colab/blob/main/AnimateDiff_colab.ipynb
📕 Paper: https://arxiv.org/pdf/2307.03190.pdf
🚀 Project: https://text2cinemagraph.github.io/website/
ai_machinelearning_big_data
🔥 Artificial Intelligence for Science (AIRS)
AIRS - это коллекция инструментов с открытым исходным кодом, датасетов ии для науки и работы с квантовыми системами.
•OpenQM: AI for Quantum Mechanics
•OpenDFT: AI for Density Functional Theory
•OpenMol: AI for Small Molecules
•OpenProt: AI for Protein Science
•OpenMat: AI for Materials Science
•OpenMI: AI for Molecular Interactions
•OpenPDE: AI for Partial Differential Equations
🖥 Github: https://github.com/divelab/AIRS
📕 Paper: https://arxiv.org/abs/2307.08423
⭐️ Website: https://www.air4.science/
📌 Dataset: https://paperswithcode.com/dataset/atom3d
ai_machinelearning_big_data
✔ Fine-tuning Stable Diffusion Models on Intel CPUs
This post will show you how to fine-tune a Stable Diffusion model on an Intel Sapphire Rapids CPU cluster.
В этом посте показано, как провести тонкую настройку модели Stable Diffusion на кластере процессоров Intel Sapphire Rapids. Настройка с помощью текстовой инверсии - техники, которая требует лишь небольшого количества изображений-примеров.
https://huggingface.co/blog/stable-diffusion-finetuning-intel
📌 Post: https://huggingface.co/blog/stable-diffusion-finetuning-intel
⭐️ Diffusers documentation: https://huggingface.co/docs/diffusers
📌 Optimum Intel documentation: https://huggingface.co/docs/optimum/main/en/intel/inference
🖥 Intel IPEX on GitHub: https://github.com/intel/intel-extension-for-pytorch
ai_machinelearning_big_data
🔈 Urhythmic: Rhythm Modeling for Voice Conversion
Unsupervised Rhythm Modeling for Voice Conversion.
Проект для изменения исходного голоса на другие, позволяющая моделировать ритм речи.
🖥 Github: https://github.com/bshall/urhythmic
🖥 Documentation: https://colab.research.google.com/github/bshall/urhythmic/blob/main/urhythmic_demo.ipynb
📕 Paper: https://arxiv.org/abs/2307.06040v1
🚀 Dataset: https://paperswithcode.com/dataset/vctk
ai_machinelearning_big_data
Для старта карьеры в машинном обучении не хватает опыта?
Решайте реальные рабочие задачи на Симуляторе ML. Под руководством ведущих Data Scientists — Валерия Бабушкина и Богдана Печёнкина — вы не просто прокачаете отдельные навыки, а поймёте, как сводить бизнес-задачи к задачам машинного обучения. Поработав над проектами различного уровня сложности, вы научитесь:
- Понимать, какие у бизнеса есть проблемы и какими метриками их можно измерить
- Проводить А/В-тесты, чтобы подтверждать прирост метрик
- Формулировать задачу для модели
- Выбирать подходящую модель и обучать её
- Организовывать процесс доставки данных для модели
- Оборачивать модель в сервис и деплоить его
После симулятора вы сможете успешно пройти собеседование на позицию в сфере Machine Learning, получить хорошую работу и приносить пользу бизнесу уже с первых дней.
Симулятор работает в режиме подписки и постоянно пополняется новыми задачами.
Присоединяйтесь!
NeRF-Det: Learning Geometry-Aware Volumetric Representation for Multi-View 3D Object Detection
NeRF-Det - это новый метод обнаружения трехмерных объектов на основе RGB-изображений. В методе NeRF используется для явной оценки 3D-геометрии объекта, что повышает эффективность распознавания.
🖥 Github: https://github.com/facebookresearch/nerf-det
📕 Paper: https://arxiv.org/abs/2307.14620v1
⚡ Project: https://chenfengxu714.github.io/nerfdet/
🔗 Dataset: https://paperswithcode.com/dataset/arkitscenes
ai_machinelearning_big_data
🐧 Tracking Anything in High Quality
Новый фреймворк для высокопроизводительного отслеживания и сегментации объектов.
🖥 Github: https://github.com/jiawen-zhu/hqtrack
📕 Paper: https://arxiv.org/abs/2307.13974v1
🔗 Dataset: https://paperswithcode.com/dataset/ovis
ai_machinelearning_big_data
🦙 LLM Attacks
Universal and Transferable Attacks on Aligned Language Models.
Метод атак, заставляющий llm модели генерировать нежелательное поведение.
🖥 Github: https://github.com/llm-attacks/llm-attacks
📕 Paper: https://arxiv.org/abs/2307.15043v1
🔗 Dataset: https://paperswithcode.com/dataset/ethics-1
ai_machinelearning_big_data
⏩ Edge Guided GANs with Multi-Scale Contrastive Learning for Semantic Image Synthesis
ECGAN новая система для решения сложной задачи семантического синтеза изображений.
🖥 Github: https://github.com/ha0tang/ecgan
📕 Paper: https://arxiv.org/abs/2307.12084v1
🔥 Dataset: https://paperswithcode.com/dataset/cityscapes
ai_machinelearning_big_data
🗣 DialogStudio: Towards Richest and Most Diverse Unified Dataset Collection and Instruction-Aware Models for Conversational AI.
Studio: самая большая и разнообразная коллекция диалоговых датасетов, объединенных в единый формат.
🖥 Github: https://github.com/salesforce/DialogStudio
📕 Paper: https://arxiv.org/abs/2307.10172v2
🔥 Dataset: https://paperswithcode.com/dataset/dialogstudio
ai_machinelearning_big_data
⭐️ CNOS: A Strong Baseline for CAD-based Novel Object Segmentation
Three-stage approach to segment unseen objects in RGB images using their CAD models.
CNOS - это простой, но эффективный трехэтапный подход к сегментации объектов.
🖥 Github: https://github.com/nv-nguyen/cnos
📕 Paper: http://arxiv.org/abs/2307.11067
🚀 Dataset: https://bop.felk.cvut.cz/datasets/
ai_machinelearning_big_data
↗️ L-Eval: Instituting Standardized Evaluation for Long Context Language Models
Data and code for L-Eval, a comprehensive long context language models evaluation benchmark.
Данные и код для L-Eval, комплексноого эталона оценки языковых моделей с длинным контекстом.
L-Eval, содержащий 411 длинных документов и более 2000 пар "вопрос-ответ", аннотированных и проверенных авторами вручную, охватывает такие области, как право, финансы, школьные лекции, длинные разговоры, новости, длинные романы.
🖥 Github: https://github.com/bshall/urhythmic
🧑💻Model: https://huggingface.co/datasets/L4NLP/LEval
📕 Paper: https://arxiv.org/abs/2307.11088
🚀 Dataset: https://paperswithcode.com/dataset/quality
ai_machinelearning_big_data
🆓 Free Courses and Guides for Learning Generative AI
Бесплатные курсы и руководства по изучению генеративного ИИ
1. Building AI Products with OpenAI — Бесплатный курс от CoRise и OpenAI.
2. Подробное руководство по Prompt Engineering by DAIR.AI
3. LLM Bootcamp - Серия бесплатных лекций от The full Stack по созданию и развертыванию приложений LLM.
4. Что такое модели трансформеров и как они работают: Учебное пособие от Cohere AI.
5. Бесплатный курс от Activeloop на LangChain & Vector Databases in Production.
6. Pinecone learning center — Множество полезных гайдов.
7. Build AI Apps with ChatGPT, Dall-E and GPT-4 — бесплатный курс по Scrimba.
8. Gartner Experts Answer the Top Generative AI Questions for Your Enterprise — отчет компании Gartner.
9. GPT best practices: Руководство ****OpenAI, в котором рассказывается о стратегии и тактике получения лучших результатов от GPT.
10. OpenAI cookbook by OpenAI — Примеры и руководства по использованию API OpenAI.
11. Prompt injection explained,
12. Generative AI short courses by DeepLearning.AI — Пять коротких курсов по генеративному ИИ, включая LangChain для разработки LLM-приложений, "Как работают диффузионные модели" и др.
13. Generative AI learning path by Google Cloud - серия из 10 курсов по продуктам и технологиям генеративного ИИ: от основ больших языковых моделей до создания и развертывания генеративного ИИ в Google Cloud.
ai_machinelearning_big_data
📌 AlpaGasus: Training A Better Alpaca with Fewer Data
The first framework to conduct instruction optimization for black-box LLM like ChatGPT, where Black-box API LLM can only provide textual output.
Модель отбора, автоматически определяющая и удаляющая низкокачественные данные с помощью LLM.
🖥 Github: https://github.com/lichang-chen/instructzero
⭐️ Project: https://lichang-chen.github.io/InstructZero/
📕 Paper: https://arxiv.org/abs/2307.08701v1
ai_machinelearning_big_data
🔥 Llama 2: Open Foundation and Fine-Tuned Chat Models
Llama 2 collection of pretrained and fine-tuned large language models (LLMs).
Новая Llama 2 в открытом доступе . Доступны предварительно обученные и настроенные модели с параметрами от 7B до 70B.
Llama 2 превосходит модели с открытым исходным кодом в большинстве протестированных бенчмарков и, судя по оценке полезности и безопасности, может стать достойной заменой моделям с закрытым исходным кодом.
🖥 Github: https://github.com/facebookresearch/llama
⭐️ Demo: https://huggingface.co/blog/llama2
🤗Hugging face: https://huggingface.co/meta-llama/Llama-2-70b
📕 Paper: https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/
ai_machinelearning_big_data
Как бороться с утечкой данных в машинном обучении
Команда VK Cloud перевела статью о том, как информация из тестового датасета ошибочно попадает в обучающий, какие у этого могут быть последствия.
В статье описываются примеры реальных датасетов со способами предотвращения утечки данных: проверки вручную, пайплайнами, перекрёстным контролем и др.
🔗 Хабр: https://habr.com/ru/companies/vk/articles/746360/
ai_machinelearning_big_data
🔥Открываем новые горизонты в машинном обучении!
Присоединяйтесь 25 июля в 20:00 к открытому уроку «TD Learning и Q-learning».
Это возможность протестировать новый онлайн-курс «Reinforcement Learning» в OTUS и начать изучать это перспективное направление.
📌Вместе с экспертом-практиком мы:
— погрузимся во временно-разностное обучение и Q-learning;
— поговорим об основных идеях обучения с подкреплением, которые делают алгоритм RL более гибким и эффективным;
— разберем алгоритм SARSA с различными примерами реализации;
— обсудим сильные и слабые стороны каждого решения.
👉🏻Регистрация для участия https://otus.pw/mPt2/
Урок будет полезен DS/ML/DL специалистам, IT-специалистам, которые хотят погрузиться в обучение с подкреплением.
После вебинара курс можно приобрести удобным для вас способом.
Нативная интеграция. Информация о продукте на сайте www.otus.ru
Салют, GigaChat! One Day Offer для NLP инженеров, разработчиков и исследователей уровня Middle/Senior/Senior++ состоится уже 22 июля 📢
А это значит, что всего за один день вы сможете пройти все этапы отбора, познакомиться с командой, забрать оффер и начать работу над нашей большой языковой моделью GigaChat и амбициозными продуктами на его основе.
Чем именно вам предстоит заниматься?
👉 Делать претрейн моделей.
👉 Обучать SOTA модели для решения задач NLP.
👉 Создавать наши основные NLP модели: GigaChat, Intent Recognition, NER, Smart Home и другие.
👉 Делать распознавание и синтез речи, выявлять ключевые слова и шумовые события.
👉 Совершенствовать существующие инструменты ИИ и создавать новые.
👉 Работать в новом кластере с большим числом A100'ых.
Ваши шансы на оффер выше, если у вас есть профильное техническое образование и опыт работы от трех лет. Переходите по ссылке и регистрируйтесь на One Day Offer 💚
🌄 Kandinsky 2.2 попал в Diffusers
Kandinsky 2.2 - это генеративная модель от Сбера, создающая изображения по текстовому описанию. Обновление привело к увеличению количества доступного функционала (ControlNet, Outpainting х2 и др.)
Diffusers — это известный и крупнейший фреймворк генеративных моделей. Его используют такие инструменты и библиотеки, как DreamFusion, Segment Anything, ML Stable Diffusion (by Apple) и другие.
Kandinsky 2.2 попал в основной репозиторий Diffusers на GitHub.
🖥 Github: https://github.com/huggingface/diffusers
ai_machinelearning_big_data