🪄IC|TC: Image Clustering Conditioned on Text Criteria
New methodology for performing image clustering based on user-specified criteria in the form of text by leveraging modern Vision-Language Models and Large Language Models
В данной работе представлена новая методика кластеризации изображений на основе заданных пользователем текстовых описаний с использованием современных моделей "зрение-язык" и больших языковых моделей.
Метод Image Clustering Conditioned on Text Criteria (IC TC), представляет собой новую парадигму кластеризации изображений и требует минимального вмешательства человека и предоставляет пользователю полный контроль над результатами кластеризации. Эксперименты показали, что IC TC может эффективно кластеризовать изображения с различными критериями, такими как действия человека, его физическое местоположение или настроение, значительно превосходя при этом другие решения.
🖥 Github: https://github.com/sehyunkwon/ictc
📕 Paper: https://arxiv.org/pdf/2310.18297v2.pdf
⏩Tasks: https://paperswithcode.com/task/clustering
/channel/ai_machinelearning_big_data
Работаешь на пределе → Выгораешь → Прокрастинируешь → Опять надо работать на пределе
Этот порочный круг можно разорвать с тем самым Neiry Mind Tracker
Наш софт обрабатывает электрическую активность твоего мозга и дает персональные рекомендации: когда мозг готов к работе, а когда пора отдохнуть...
😖 Иначе ты снова поймаешь ту самую прокрастинацию
Это функцию мы называем «Нейропомодоро», потому что это похоже на тот самый таймер: ты работаешь 20-30 минут и потом софт говорит, что пора сделать паузу...
❗️ Только в нашем случае — это персональный таймер, основанный на твоей РЕАЛЬНОЙ усталости
Под капотом — настоящая наука и длительные исследования нейрофизиологов
Узнай подробнее о майнд-трекере Neiry: https://neiry.ru/mindtracker?utm_source=tg_in&utm_medium=3110mac&utm_term=adP3
Реклама. ООО "НЕЙРИ". ИНН 9701140612. erid: LjN8KXJnS
Запусти стартап и получи грант на его развитие
Заполняй заявку в акселератор Сбера для студентов, аспирантов и научных сотрудников вузов. Регистрация открыта!
За 6 месяцев ты:
— узнаешь, какие этапы нужно пройти, чтобы создать стартап
— соберешь команду или присоединишься к существующей
— создашь бизнес-проект под руководством наставника
— достигнешь первых бизнес-результатов: предзаказы, договоренности о пилотировании или MVP устройства
Какие есть преимущества?
— лучшие команды представят проекты на Демо-дне, где их оценят топ-менеджеры Сбера и других корпораций, бизнес-ангелы
— победители получат призы от Сбера, смогут рассчитывать на гранты от Moscow Seed Fund и на специальный грант Президента РФ для магистров
Выпускники программы создали более 1500 технологических стартап-проектов и привлекли больше 420 млн рублей на их развитие.
Хочешь так же? Регистрируйся!
❗️Как легко получить Spark кластер на 10 узлов?
Современные облачные инфраструктуры позволяют сделать это всего за несколько шагов.
▶️ 9 ноября в 20:00 мск в рамках онлайн-курса MLOps от OTUS пройдёт открытый урок «Big Data в облаках».
На открытом уроке:
🔹Рассмотрим как создать в Yandex Cloud Spark кластер.
🔹 Что лучше использовать в качестве хранилища: HDFS или S3.
🔹 Как можно экономить за счет динамического выделения ресурсов.
✅ Владение инструментами MLOps открывает новые карьерные горизонты специалистам ML, Data Scientist’ам и Software инженерам.
👉 РЕГИСТРАЦИЯ
https://otus.ru/lessons/ml-bigdata/?utm_source=telegram&utm_medium=cpm&utm_campaign=ml-bigdata&utm_content=lesson-09-11-2023&utm_term=ai_machinelearning_big_data#event-3489
Реклама. ООО "ОТУС ОНЛАЙН-ОБРАЗОВАНИЕ". ИНН 9705100963. erid: LjN8KLt6S
CS25: Transformers United V3
Новые лекции на курсе по Трансформерам от Стенфорда! На Stanford CS 25 "Transformers United" выступали такие звездные гости, как Андрей Карпаты, Ноам Браун, Лукас Бейер и сам Джефф Хинтон!
Вышел новый доклад, посвящённый созданию и рецептам создания универсальных ИИ-агентов в открытых мирах:
- MineDojo: открытый фреймворк и мультимодальная база данных для обучения агентов Minecraft.
- Voyager: агент для пожизненного обучения в Minecraft на базе LLM.
- Eureka: GPT-4 развивает функции вознаграждения, чтобы научить руку робота крутить ручку.
- VIMA: один из самых ранних мультимодальных LLM с.
- Взгляд в будущее: перспективные направления исследований.
☑️ Slides: https://drive.google.com/file/d/1lWIhijUaTZkkWOC_YwZHMoI0h7EAWVPL/view
📑 Lectures: https://web.stanford.edu/class/cs25
ai_machinelearning_big_data
🕵️ Detecting Pretraining Data from Large Language ModelsMin-K% Prob
, простой и эффективный метод, который позволяет определить, была ли LLM предварительно обучена на заданном тексте, а также для обнаружения защищенного авторским правом текста.
Датасет WikiMIA служит бенчмарком, предназначенным для обнаружения данных предварительного обучения.
🖥 Github: https://github.com/swj0419/detect-pretrain-code
📕 Paper: https://arxiv.org/pdf/2310.16789.pdf
📘 WikiMIA Benchmark:
⏩ Project: https://swj0419.github.io/detect-pretrain.github.io/
ai_machinelearning_big_data
🔇 Efficient Large-Scale Audio Tagging
AudioSet pre-trained models ready for downstream training and extraction of audio embeddings.
Трансформеры доминируют в области по работе с адуио и заменили CNN в качестве современной нейросетевой архитектуры.
Трансформеры отлично справляются с огромными аудио датасетами и подходят для создания мощных предварительно обученных моделей.
Однако трансформеры являются сложными моделями и масштабируются квадратично по отношению к длине данных, что делает их медленными.
В данной модели используются динамические CNN, которые достигают лучшей производительности на задачах разметки аудио данных и хорошо масштабируются, достигая производительности трансформеров и даже превосходя их.
🖥 Github: https://github.com/fschmid56/efficientat
📕 Paper: https://arxiv.org/abs/2310.15648v1
⏩ Demo: https://21527a47f03813481c.gradio.live/
ai_machinelearning_big_data
🦩 Woodpecker: Hallucination Correction for Multimodal Large Language Models
Hallucination Correction for MLLMs. The first work to correct hallucination in multimodal large language models.
Большие языковые модели могут вызывать галлюцинации и генерировать ложную информацию, что приводит к потенциальной дезинформации и путанице.
Для борьбы с галлюцинациями в современных исследованиях в основном используется метод настройки по инструкции, требующий переобучения моделей на конкретных данных.
В данной работе предлагается иной подход, представляя метод не требующий переобучения модели, который называется Woodpecker.
Woodpecker работает в 5 этапов: извлечение ключевых понятий, формулировка вопроса, визуальная проверка знаний, формирование визуального утверждения и коррекция галлюцинаций. Реализованный по принципу постредактирования, Woodpecker может легко работать с различными МЛЛМ, оставаясь при этом эффективным за счет доступа к промежуточным результатам работы модели.
🖥 Github: https://github.com/bradyfu/woodpecker
📕 Paper: https://arxiv.org/abs/2310.15110v1
⏩ Demo: https://21527a47f03813481c.gradio.live/
ai_machinelearning_big_data
✅ Zero123++: a Single Image to Consistent Multi-view Diffusion Base Model
Новая модель диффузии для генерации многоракурсных 3D изображений из одного изображения. Фреймворк позволяет получать высококачественные изображения, решая такие распространенные проблемы, как деградация текстуры и геометрическое несоответствие генерации.
🖥 Github: https://github.com/sudo-ai-3d/zero123plus
📕 Paper: https://arxiv.org/abs/2310.15110v1
⭐️ Demo: https://huggingface.co/spaces/sudo-ai/zero123plus-demo-space
🚀Dataset: https://paperswithcode.com/dataset/shapenet
ai_machinelearning_big_data
🖥 AutoGen
AutoGen provides multi-agent conversation framework as a high-level abstraction.
AutoGen - это фреймворк от Майкрософт, позволяющий разрабатывать LLM-приложения с использованием нескольких агентов, способных взаимодействовать друг с другом для решения задач. Агенты AutoGen настраиваются, общаются и легко допускают участие человека.
Агенту можно поручить действовать в качестве кодера, пишущего код на основе промыта. Второму агенту можно назначить роль ревьюера кода, который указывает на ошибки в коде. После обмена сообщениями агенты отдают пользователю финальный код с пояснениями.
Такой подход приводит к значительному повышению эффективности работы генеративных моделей – по данным Microsoft, AutoGen может ускорить написание кода в несколько раз.
🖥 Github: https://github.com/microsoft/autogen
📕 Project: https://microsoft.github.io/autogen/
🤗 FLAML.: https://github.com/microsoft/FLAML
ai_machinelearning_big_data
🐾 Putting the Object Back into Video Object Segmentation (Cutie)
Cutie - это фреймворк для сегментации видеообъектов, обладающий большей высокой производительностью, устойчивостью и скоростью.
Cutie четко отделяет семантику объекта переднего плана от фона. На сложном наборе данных MOSE Cutie превосходит все предыдущие методы сегментации.git clone https://github.com/hkchengrex/Cutie.git
🖥 Github: https://github.com/hkchengrex/Cutie
🖥 Colab: https://colab.research.google.com/drive/1yo43XTbjxuWA7XgCUO9qxAi7wBI6HzvP?usp=sharing
📕 Paper: https://arxiv.org/abs/2310.12982v1
🚀Project: https://hkchengrex.github.io/Cutie/
ai_machinelearning_big_data
📑 DocXChain: A Powerful Open-Source Toolchain for Document Parsing and Beyond
DocXChain - мощный инструментарий с открытым исходным кодом для синтаксического анализа документов, предназначенный для автоматического преобразования разнородной информации, содержащейся в неструктурированных документах, таких как текст, таблицы и диаграммы, схемы в структурированные представления, доступные для машинного чтения и манипулирования.
🖥 Github: https://github.com/alibabaresearch/advancedliteratemachinery
📕 Paper: https://arxiv.org/abs/2310.12430v1
🚀Damo: https://damo.alibaba.com/labs/language-technology
ai_machinelearning_big_data
📒 GigaChat нового поколения.
Разработчики @gigachat_bot изменили подход к обучению модели, а потому практически все умения модели были улучшены. В частности, речь идет о сокращении текстов, ответов на вопросы и генерации идей.
Появился и бот GigaChat в социальной сети «ВКонтакте» — после активации, его можно использовать для самых разных целей: от создания текстов до генерации изображений (за счет интеграции с Kandinsky).
Число уникальных пользователей GigaChat достигло 1 млн.
• Попробовать
@data_analysis_ml
👨 AG3D: Learning to Generate 3D Avatars from 2D Image Collections (ICCV 2023)
AG3D: Фреймворк для генерации трехмерных аватаров из двумерных изображений
🖥 Github: https://github.com/zj-dong/AG3D
📕 Paper: https://arxiv.org/abs/2305.02312
🚀Video: https://youtu.be/niP1YhJXEBE
⭐️ Project: https://zj-dong.github.io/AG3D/
ai_machinelearning_big_data
✨ Cross-Episodic Curriculum for Transformer Agents
Трансформеры отлично справляются с выявлением закономерностей, но не справляются с ограниченными данными, что часто встречается в робототехнике.
При Cross-Episodic обучении, агент-трансформер учится совершенствоваться с помощью внутриконтекстной программы обучения. По сути, обучающий сигнал заложен в последовательность все более трудных задач и ии развивается, находя решение на них.pip install git+https://github.com/cec-agent/CEC
🖥 Github: https://github.com/CEC-Agent/CEC
📕 Paper: https://cec-agent.github.io/src/bib.txt
⭐️ Project: https://cec-agent.github.io
ai_machinelearning_big_data
Руководитель ML-направления в Яндекс Учебник
Москва / гибрид
Team Lead
Яндекс Учебник — это платформа, которая помогает проще и эффективнее осваивать школьную программу. Мы хотим изменить парадигмы образования, чтобы ускорить изучение тем и повысить качество их закрепления. Для этого мы разрабатываем GPT в Учебнике — инструмент, который упростит процесс обучения как для ребёнка, так и для учителя. Мы стремимся, чтобы машинное обучение и GPT в частности помогали выстраивать оптимальный образовательный маршрут, выполнять задания и прорабатывать ошибки.
Какие задачи вас ждут
- руководить процессом разработки нейросети, которая будет учить школьников информатике: анализировать успехи, составлять учебные планы, давать советы и искать проблемные области, и всё это — с индивидуальным подходом;
- налаживать взаимодействие между продуктом и командой ML, которая обучает первые версии моделей, основанных на YaGPT;
- совместно с командой ML разрабатывать методические инструменты, которые будут на основе больших данных о поведении пользователя оценивать, какие его навыки нуждаются в проработке, и помогать совершенствовать их.
Мы ждем, что вы
- знаете Python и SQL, работали с SciPy, Pandas, Torch, TensorFlow;
- хорошо понимаете принципы ML и применяли их на практике;
- можете с нуля построить пайплайн обучения модели: формулирование требований, выбор метрик, выбор алгоритма машинного обучения, сбор данных, обучение алгоритма, оценка качества, развёртка в продакшн;
- понимаете, как модель будет работать в продакшне, с учётом ограничений;
- руководили командой.
Будет плюсом, если вы
- проектировали и разрабатывали высоконагруженные ML-сервисы.
Откликнуться
Контакт в тг: @bachinina_ek
☑ PERF: Panoramic Neural Radiance Field from a Single Panorama
PERF - новая систему синтеза 360-градусного обзора
, которая генерирует Nerf я на основе одной панорамы.
PERF позволяет осуществлять трехмерное перемещение по сложным сценам без затратного и утомительного сбора изображений.
Многочисленные эксперименты на Replica и новом датасете PERF-in-the-wild демонстрируют превосходство PERF над другими современными методами. Модель подходит для задач преобразование панорамы в 3D, текста в 3D и стилизации 3D-сцен.
🖥 Github: https://github.com/perf-project/PeRF
⚡️Project: https://perf-project.github.io/
📕 Paper: https://arxiv.org/abs/2310.16831v1
⏩ Dataset: https://paperswithcode.com/dataset/replica
/channel/ai_machinelearning_big_data
🔅 FreeNoise: Tuning-Free Longer Video Diffusion via Noise Rescheduling
✅ totally no tuning ✅less than 20% extra time ✅ support 512 frames
LongerCrafter (FreeNoise) - это новый метод генерации длинных видео, не требующих настроек, на основе предварительно обученных моделей диффузии.
Обширные эксперименты показывают превосходство данного метода по сравнению с предыдущими для расширения генеративных возможностей диффузионных моделей видео.
Промт, который был использован для генерации видео: "Чихуахуа в костюме космонавта, парящая в космосе, кинематографическое освещение, эффект свечения";
Разрешение: 1024 x 576; Кадры: 64.
🖥 Github: https://github.com/arthur-qiu/LongerCrafter
📕 Paper: https://arxiv.org/abs/2310.15169
⏩ Project: http://haonanqiu.com/projects/FreeNoise.html
ai_machinelearning_big_data
Masked Space-Time Hash Encoding for Efficient Dynamic Scene Reconstruction
Masked Space-Time Hash (MSTH) - новый метод эффективного восстановления динамических 3D-сцен из многоракурсного видео.
🖥 Github: https://github.com/masked-spacetime-hashing/msth
🤗 HH: https://huggingface.co/datasets/masked-spacetime-hashing/Campus
📕 Paper: https://arxiv.org/abs/2310.17527v1
⏩ Dataset: https://paperswithcode.com/dataset/mip-nerf-360
ai_machinelearning_big_data
Открыта регистрация на отборочный этап Всероссийского хакатона по биометрии с призовым фондом 1 000 000 рублей!
⠀
Тебе предстоит решить интересные задачи, чтобы победить в отборочном туре и принять участие в финале Всероссийского хакатона по биометрии, который пройдет уже 24-25 ноября в Москве.
Кейсы:
• Создание дипфейков для тестирования
• Обнаружение дипфейков
• Некооперативный фронтальный алгоритм защиты от атак предъявления
• Решения для использования новых биометрических модальностей на пользовательских устройствах
⠀ ⠀
🗓 Даты отборочного этапа в ОНЛАЙН-ФОРМАТЕ: 3-5 ноября 2023 года
❗️Даты финала: 24-25 ноября 2023 года 📍 Место: Москва
❗️ Формат: смешанный (отборочный этап в онлайн-формате, а финал на площадке в Москве)
👉 Регистрация на отборочный тур открыта до 29 октября 2023 года: https://tglink.io/4ed0cc6120bd
Реклама. ООО "АКСЕЛЕРАТОР ВОЗМОЖНОСТЕЙ". ИНН 9704005146. erid: LjN8KXChL
💥Прокачайтесь в машинном обучении на бесплатных Тренировках по ML от Яндекса
ML — новое направление Тренировок от Яндекса, которое посвящено классическому машинному обучению. Курс разработан совместно со Школой анализа данных и подойдёт для выпускников технических вузов и начинающих ML-специалистов.
Тренировки пройдут с 30 октября по 29 ноября.
Тренировки по ML — это отличная возможность прокачаться в теме, закрепить знания и подготовиться к отбору в IT-компанию. Здесь вас ждут лекции от экспертов Яндекса, домашние задания и еженедельные онлайн-разборы.
🏆 Участники, которые проявят себя лучше других, получат фаст-трек в Яндекс, а те, кто пройдёт больше половины курса — сертификат о прохождении, который украсит портфолио.
Как проходят Тренировки по ML
1️⃣ Регистрируетесь: участвовать могут все желающие бесплатно и без конкурсного отбора. Старт Тренировок 30 октября.
2️⃣ Смотрите лекции и самостоятельно решаете задачи, которые определяют ваше место в рейтинге участников
3️⃣ Проверяете себя на еженедельных онлайн-разборах
4️⃣ Получаете награды от Яндекса
Я в деле!
Если вы уже чувствуете себя уверенно в направлении ML, то скорее подавайте заявку на оплачиваемую стажировку.
⚡В OTUS стартует набор в группу курса Reinforcement Learning. Отправьте заявку, для того чтобы получить доступ к открытым урокам и получите скидку на обучение.
31.10 в 20.00 (мск) приглашаем на welcome-вебинар «Основные алгоритмы в обучении с подкреплением»
📌На занятии вы:
- познакомитесь с основными алгоритмами обучения с подкреплением;
- узнаете, как применять нейросети для обучения агентов, как обучить агента в среде с дискретным и непрерывным набором действий;
- изучите многообразие алгоритмов обучения с подкреплением и выбор наиболее подходящих из них.
👉Регистрация https://otus.pw/SJiV/
После прохождения курса студенты поймут сильные и слабые стороны основных алгоритмов RL и научатся применять их для решения разнообразных задач в реальном мире, включая игровую индустрию, робототехнику, управление энергетическими системами и управление финансовым портфелем.
При оплате курса возможны разные способы оплаты и рассрочка платежа
Реклама. ООО "ОТУС ОНЛАЙН-ОБРАЗОВАНИЕ". ИНН 9705100963. erid: LjN8KbLVB
Приглашаем на «Большую дату» — митап для аналитиков и дата-сайентистов в Москве
Обсудим последние новости мира аналитики данных, поделимся реальными кейсами и их решениями. Будут спикеры из разных команд Яндекса:
🔸 Андрей Молотов, старший аналитик-разработчик. Расскажет, как предсказать отток сотрудников и уменьшить его с помощью ML-моделей и экспериментов.
🔸 Яна Кузнецова, руководитель группы платёжной аналитики. Объяснит, что такое FinOps и какую роль играет аналитика в C2B-платежах Яндекса.
🔸 Владислав Енин, менеджер проектов. Поделится историей о повышении конверсии платежей в Маркете.
🔸 Кирилл Черкашин, старший аналитик-разработчик. Объяснит, с какими сложностями столкнулись ребята при разработке NLP-пайплайна в модерации рекламы и как их решали.
🔸 Александр Самусенко, руководитель группы развития рекламных продуктов и стабильности. Расскажет, что такое аналитика ранжирования и зачем она нужна.
После докладов сыграем в «Сто к одному», отдохнём, поболтаем о жизни и просто хорошо проведём время. Митап пройдёт 28 октября в Москве, для всех желающих мы проведём онлайн-трансляцию.
Зарегистрироваться можно здесь.
Реклама. ООО "Яндекс". erid: 2Vtzqx6YBjb
🏆 Yandex Cup 2023 — открытый чемпионат для настоящих творцов
Разработчики — художники нового мира. Они создают смыслы, правила и законы, манифестируют идеи, творят миры и целые вселенные. И, если их предшественники делали это, используя слова, краски и звуки, то современные творцы создают новую реальность с помощью программного кода.
Искусство писать код
Тема чемпионата в этом году «Решаем искусство». Участников ждут нестандартные задачи на стыке IT и творчества, а лучшие встретятся лицом к лицу в финале, чтобы оживить арт-инсталляцию и разделить между собой 8 500 000 рублей.
Показать своё мастерство можно в 6 направлениях:
🔸 Фронтенд
🔸 Бэкенд
🔸 Мобильная разработка
🔸 Аналитика
🔸 Алгоритмы
🔸 Машинное обучение
Финал и церемония награждения пройдут офлайн в офисе Яндекса в Казахстане. Яндекс предоставит финалистам проезд и проживание в Алматы.
Регистрация открыта до 29 октября включительно:
👉 Участвую!
#Yandex_Cup23
ai_machinelearning_big_data
🦙AgentTuning: Enabling Generalized Agent Abilities For LLMs.
AgentTuning - простой и эффективный метод расширения агентских возможностей для решения сложных задачи реального мира при сохранении всех возможностей ЛЛМ.
AgentTuning содержит датасет 1866 высококачественных взаимодействий, предназначенных для улучшения работы ИИ-агентов в 6 различных реальных задачах.
🖥 Github: https://github.com/THUDM/AgentTuning
📕 Paper: https://arxiv.org/abs/2310.12823
🤗 Model: https://huggingface.co/THUDM/agentlm-70b
🚀Dataset: https://huggingface.co/datasets/THUDM/AgentInstruct
⭐️ Project: https://thudm.github.io/AgentTuning/
ai_machinelearning_big_data
Как начать развиваться в профессии дата-инженера?
👨💻Освойте лучшие практики работы с данными на онлайн-курсе «Data Engineer» от OTUS.
➡️За 4 месяца вы научитесь собирать данные, разрабатывать архитектуру данных в компании и создавать сервисы для обработки данных больших объемов. Одна из фишек курса — метод кейсов. На занятиях разбираем примеры внедрений, использования инструментов, оптимизации производительности, а также возможные проблемы и ошибки.
Старт занятий — 27 октября.
👉 ПРОЙТИ ТЕСТ https://otus.pw/mWaY/
Успейте пройти вступительный тест и занять место в группе по спец.цене.
Приобрести курс возможно в рассрочку.
Реклама. ООО "ОТУС ОНЛАЙН-ОБРАЗОВАНИЕ". ИНН 9705100963. erid: LjN8KTHA4
🛠 Improving Long Document Topic Segmentation Models With Enhanced Coherence Modeling
SpokenNLP: Официальный репозиторий кодовых баз по самым разным исследовательским проектам, разработанным командой SpokenNLP Speech Lab, Alibaba DAMO Academy.
🖥 Github: https://github.com/alibaba-damo-academy/spokennlp
📕 Paper: https://arxiv.org/pdf/2310.11772v1.pdf
🚀Dataset: https://paperswithcode.com/dataset/wikisection
ai_machinelearning_big_data
Как автоматизировать переобучение ML-моделей
Разработчики ML-моделей из Газпромбанка рассказывают, как в условиях банковской регуляторики, требований безопасников и запрета на использование некоторых инструментов (того же Git LFS) сократить срок переобучения модели с месяца до одного дня.
В статье говорится об разделении и параллельном выполнение процесса сканирования и выкатки кода по CI/CD-процессу, благодаря архитектурному разграничению весов модели и самого кода как разных сущностей сборки.
https://habr.com/ru/companies/gazprombank/articles/766736/
Всем, привет, мы исследовательское агентство SmartMinds и сейчас проводим опрос среди IT специалистов. Что хотим узнать: что важно при выборе работодателя, какие каналы являются эффективными при поиске работы и ходите ли вы на мероприятия для IT. Опрос анонимный, займет не более 3-х минут и мы будем благодарны всем, кто примет участие ❤️
Пройти опрос
Erid: Kra23uXjQ
28 октября стриминг выйдет за пределы ваших экранов на конференции PlayButton 2023
Спикеры из команд разработки соберутся на большой конференции Кинопоиска о стриминге и обсудят, как из смелых идей появляются фичи и продукты будущего.
Ребята поделятся решениями, которые создают и развивают на контентных сервисах, расскажут про умные рекомендации и работу с платформами.
Приходите, чтобы узнать, как из мира фантазий создаётся реальность. В программе доклады про нейросети, генеративные технологии и другие решения, которые уже сейчас упрощают жизнь разработчикам.
Мероприятие пройдёт онлайн и оффлайн в Москве. Чтобы стать участником, нужно заполнить анкету и пройти модерацию. Количество мест ограничено.
Реклама. ООО «КИНОПОИСК» ИНН 7710688352