ai_machinelearning_big_data | Технологии

Telegram-канал ai_machinelearning_big_data - Machinelearning

27349

Самая актуальная информация из мира ML, Нейронных сетей,DI По всем вопросам- @haarrp @itchannels_telegram - 🔥 best it channels @pythonl - 🐍 @machinee_learning -chat @ArtificialIntelligencedl - AI @datascienceiot - ml 📚 @machinelearning_ru ml

Подписаться на канал

Machinelearning

Как получить первый опыт работы ML-инженером и выделиться на собеседовании?

Приходите практиковаться в Симулятор ML. Под руководством ведущих Data Scientists  Валерия Бабушкина и Богдана Печёнкина  вы не просто прокачаете отдельные навыки, но и поймёте, как сводить бизнес-задачи к задачам машинного обучения. 

Динамическое ценообразование, рекомендательные системы, матчинг, модели прогноза, А/В-тесты, тестирование кода в Python — реальные рабочие проекты по этим темам ждут вас в Симуляторе. 

Симулятор работает в режиме подписки и постоянно пополняется новыми задачами — сейчас их уже более 50. Присоединяйтесь!

Читать полностью…

Machinelearning

⭐️ Drag Your GAN: Interactive Point-based Manipulation on the Generative Image Manifold

DragGAN, anyone can deform an image with precise control over where pixels go, thus manipulating the pose, shape, expression, and layout of diverse categories such as animals, cars, humans, landscapes, etc.

DragGAN: Новый метод манипуляции сгенерированных изображений, который позволяет изменять позицию объектов, их размеры, выражения лиц, позы одим кликом.

📌 Project: https://vcai.mpi-inf.mpg.de/projects/DragGAN/

🖥 Github: https://github.com/XingangPan/DragGAN

Paper: https://arxiv.org/pdf/2305.10973.pdf

ai_machinelearning_big_data

Читать полностью…

Machinelearning

1 млн рублей получат авторы лучшей научной статьи по искусственному интеллекту и машинному обучению

В рамках международной конференции «Путешествие в мир искусственного интеллекта» (AI Journey 2023) проходит конкурс научных статей по искусственному интеллекту (AI) и машинному обучению (ML). Авторы самых интересных работ, помимо публикации в авторитетном научном журнале, также смогут принять участие в программе конференции.

Рецензии на научные работы дадут профи из мира AI и ML. Наиболее выдающиеся статьи будут опубликованы в научном журнале с международной аудиторией: «Доклады Российской академии наук. Математика, информатика, процессы управления» и в англоязычном Doklady Mathematics. За лучшую статью предусмотрен приз — 1 млн рублей.

Статья должна быть оформлена по правилам конкурса и содержать ранее не опубликованные материалы. Работы принимаются на русском и английском языках.

Переходите на сайт AI Journey, регистрируйтесь и участвуйте.

Читать полностью…

Machinelearning

Почему мы всё время начинаем и бросаем учить английский?

Одна из причин — мы не знаем свой уровень языка. В итоге берёмся за контент, который нам не по силам. Например, сериал «Друзья» часто советуют смотреть тем, кто начинает учить язык, но в нём полно юмора, который начинающие пока понять не могут.

В итоге разрыв знаний удручает и мотивация снова падает.

Если вы готовы дать английскому ещё один шанс, мы поможем поверить в свои силы и довести дело до конца.

Приходите на бесплатную консультацию в Яндекс Практикум:

- Проведём устный тест на уровень языка,
- Покажем, чего реально добиться за полгода изучения,
- Расскажем, как наши курсы помогут достичь цели.


Записаться

Читать полностью…

Machinelearning

💪 Хотите выйти на новый уровень в Machine Learning? Научитесь рекомендовать визуально похожие товары!

Приглашаем вас 24 мая в 20:00 мск на открытый урок в OTUS. Для участия пройдите вступительный тест 👉 https://otus.pw/9S45/

Занятие приурочено к старту онлайн-курса «Рекомендательные системы» в OTUS. Вместе с Александром Брут-Бурляко, DS-инженером в СБЕР Neurolab, разберем, как использовать векторное представление изображений и нейросети компьютерного зрения для поиска объектов по фото.

В результате вы поймете, как:

- Работать с глубокими нейросетями компьютерного зрения

- Готовить изображения для обработки

- Сделать рекомендательную систему на основе похожих изображений.

💻 Урок подходит для DS/ML/DL-специалистов, аналитиков и руководителей контентных сервисов и интернет-магазинов, которые хотят создать свою рекомендательную систему на основе сравнения изображений.

После вебинара вы сможете продолжить обучение на курсе. Сейчас доступны разные способы оплаты. https://otus.pw/9S45/

Нативная интеграция. Информация о продукте на otus.ru

Читать полностью…

Machinelearning

❗️Как пройти техническое собеседование на ML-специалиста?

⚠️ Узнайте на примере mock-интервью с преподавателями курса «MLOps» в OTUS!

На открытом уроке вы сможете наблюдать один из этапов собеседования при найме ML-специалистов — ML System Design секцию.

👉 Для удачного прохождения этого этапа не достаточно только знания алгоритмов машинного обучения. Также проверяются навыки проектирования ML систем, которые могут успешно работать в промышленной среде.

Больше инструментов MLOps ждет вас на курсе. Обратите внимание: возможные способы оплаты обучения.

👉 Готовьте вопросы и записывайтесь на вебинар!
https://otus.pw/mQFg/

Нативная интеграция. Информация о продукте www.otus.ru

Читать полностью…

Machinelearning

An Inverse Scaling Law for CLIP Training

CLIP, the first foundation model that connects images and text, has enabled many recent breakthroughs in computer vision. As a result of this finding, we are able to successfully train CLIP even by using academic resources.

CLIP, первая фундаментальная модель, которая связывает изображения и текст, которая помогла совершить множество прорывов в компьютерном зрении. Проект показывает спопобы снижения вычислительных затрат на работу CLIP.


🖥 Github: https://github.com/UCSC-VLAA/CLIPA

Paper: https://arxiv.org/abs/2305.07017v1

📌 Dataset: https://paperswithcode.com/dataset/imagenet-sketch

ai_machinelearning_big_data

Читать полностью…

Machinelearning

⭐️ Towards Building the Federated GPT: Federated Instruction Tuning

Shepherd: A lightweight, foundational framework enabling federated instruction tuning for large language models


Модель для фундаментальной основе для изучения федеративной тонкой настройки LLM.

🖥 Github: https://github.com/jayzhang42/federatedgpt-shepherd

Paper: https://arxiv.org/pdf/2305.05644.pdf

📌 Data Preparation: https://github.com/jayzhang42/federatedgpt-shepherd#Data_Preparation

ai_machinelearning_big_data

Читать полностью…

Machinelearning

📖 DaGAN++: Depth-Aware Generative Adversarial Network for Talking Head Video Generation

A novel self-supervised method for learning dense 3D facial geometry (ie, depth) from face videos, without requiring camera parameters and 3D geometry annotations in training.

Новый метод на основе генеративных состязательных сетей для генерации видео с говорящими головами.

🖥 Github: https://github.com/harlanhong/cvpr2022-dagan

Paper: https://arxiv.org/pdf/2305.06225v1.pdf

⭐️ Demo: https://huggingface.co/spaces/HarlanHong/DaGAN

📌 Dataset: https://paperswithcode.com/dataset/voxceleb1

ai_machinelearning_big_data

Читать полностью…

Machinelearning

⁉️ Начните изучать инструменты MLOps с библиотеки DataFrame API!

⚠️ Приглашаем 15 мая в 20:00 мск на открытый урок «DataFrame API: от Dask к PySpark» в OTUS.

DataFrame API — это библиотека для обработки данных в Python, которая часто используется в задачах машинного обучения.

✅ На этом занятии мы рассмотрим ситуацию, когда данные уже не помещаются на дисковый массив, а для быстрой обработки требуется большое количество ядер.

⬆️ Покажем на практике как деплоить модели в production

Больше инструментов MLOps ждет вас на курсе. Обратите внимание: возможные способы оплаты обучения.

👉 Готовьте вопросы и записывайтесь на вебинар!
https://otus.pw/UImi/

Нативная интеграция. Информация о продукте www.otus.ru

Читать полностью…

Machinelearning

VK Cloud Conf: как перенести лучшие практики разработки ИТ-компаний в классический бизнес

Каждая крупная российская компания, которая стремится к росту, вынуждена развивать собственную разработку. Для многих это новое направление. В то же время большинство вопросов современной разработки — инструментарий, ресурсы, процессы — общие для разных отраслей.

⏰ Когда: 8 июня, 12:00
📍Где: Москва и онлайн
⚡️ Регистрация

На VK Cloud Conf эксперты VK и крупнейших российских компаний поделятся опытом организации процессов разработки, работы с данными и информационной безопасности в облаке.
Вы узнаете, какими инструментами и подходами можно сократить время вывода новых разработок на рынок. Спикеры обсудят архитектуру современных аналитических систем — от сбора и структурирования данных до визуализации и разработки моделей машинного обучения.

В программе:

🔹 Как повысить эффективность разработки ИТ-решений с помощью облачных сервисов
🔹Подходы к работе с данными: примеры масштабных дата-решений, особенности и результаты проектов
🔹 Тренды и примеры миграции на российские базы данных
🔹 Лучшие практики облачной безопасности в условиях требований к конфиденциальности данных
Конференция будет полезна руководителям компаний и ИТ-специалистам разных направлений.

Читать полностью…

Machinelearning

ZipIt! Merging Models from Different Tasks without Training

ZipIt allows to combine completely distinct models with different initializations, each solving a separate task, into one multi-task model without any additional training.

"ZipIt!", новый метод объединения двух произвольных моделей одной архитектуры.

🖥 Github: https://github.com/gstoica27/zipit

Paper: https://arxiv.org/abs/2305.03053v1

📌 Dataset: https://paperswithcode.com/dataset/nabirds

ai_machinelearning_big_data

Читать полностью…

Machinelearning

🖥 Awesome Chatgpt

Awesome list for ChatGPT — an artificial intelligence chatbot

Awesome список для ChatGPT.


🖥 Github: https://github.com/sindresorhus/awesome-chatgpt

💨 Examples: https://github.com/xiaowuc2/ChatGPT-Python-Applications

✅️ QuickGPT: https://sindresorhus.gumroad.com/l/quickgpt

ai_machinelearning_big_data

Читать полностью…

Machinelearning

TaskPrompter: Spatial-Channel Multi-Task Prompting for Dense Scene Understanding

Novel spatial-channel multi-task prompting transformer framework to achieve this target.

Две мощные модели многозадачных трансформеров для пониманияк контекста на видео.

🖥 Github: https://github.com/prismformore/multi-task-transformer

Paper: https://openreview.net/forum?id=-CwPopPJda

📌 Dataset: https://paperswithcode.com/dataset/cityscapes-3d

ai_machinelearning_big_data

Читать полностью…

Machinelearning

🖌 Edit Everything: A Text-Guided Generative System for Images Editing

A text-guided generative system without any finetuning (zero-shot).

Edit Everything позволяет пользователям редактировать изображения с помощью простых текстовых инструкций.


🖥 Github: https://github.com/defengxie/edit_everything

Paper: https://arxiv.org/abs/2304.14006v1

🚀 Dataset: https://paperswithcode.com/dataset/wukong

ai_machinelearning_big_data

Читать полностью…

Machinelearning

🦙 LLM-Pruner: On the Structural Pruning of Large Language Models

Compress your LLMs to any size;

LLM-Pruner: модель прунинга для больших языковых моделей.

🖥 Github: https://github.com/horseee/llm-pruner

Paper: https://arxiv.org/abs/2305.11627v1

📌 Dataset: https://paperswithcode.com/dataset/piqa

ai_machinelearning_big_data

Читать полностью…

Machinelearning

Diff-Pruning: Structural Pruning for Diffusion Models

Structural Pruning for Diffusion Models.

Diff-Pruning - новый эффективный метод прунинга для диффузионных моделей.

🖥 Github: https://github.com/vainf/diff-pruning

Paper: https://arxiv.org/abs/2305.10924v1

📌 Dataset: https://paperswithcode.com/dataset/lsun

ai_machinelearning_big_data

Читать полностью…

Machinelearning

Segment Any Anomaly without Training via Hybrid Prompt Regularization

This project addresses zero-shot anomaly detection by combining SAM and Grouding DINO.

Цель этого проекта - сегментировать любую аномалию без какого-либо обучения. Это интересное демо работает, объединяя Grounding DINO и Segment Anything!

🖥 Github: https://github.com/caoyunkang/segment-any-anomaly

🖥 Colab: https://colab.research.google.com/drive/1Rwio_KfziuLp79Qh_ugum64Hjnq4ZwsE?usp=sharing

Paper: https://arxiv.org/abs/2305.11013v1

📌 Dataset: https://paperswithcode.com/dataset/visa

ai_machinelearning_big_data

Читать полностью…

Machinelearning

FunASR: A Fundamental End-to-End Speech Recognition Toolkit

FunASR, an open-source speech recognition toolkit designed to bridge the gap between academic research and industrial applications

Фундаментальный набор инструментов для распознавания речи.


🖥 Github: https://github.com/alibaba-damo-academy/FunASR

⭐️ Docs: https://alibaba-damo-academy.github.io/FunASR/en/index.html

Paper: https://arxiv.org/abs/2305.11013v1

📌 Dataset: https://paperswithcode.com/dataset/wenetspeech

ai_machinelearning_big_data

Читать полностью…

Machinelearning

FastComposer: Tuning-Free Multi-Subject Image Generation with Localized Attention

FastComposer uses subject embeddings extracted by an image encoder to augment the generic text conditioning in diffusion models, enabling personalized image generation based on subject images and textual instructions with only forward passes.

FastComposer - новый проект MIT, который обеспечивает высококачественное, персонализированное, многопредметное преобразование текста в изображение без тонкой настройки.

🖥 Github: https://github.com/mit-han-lab/fastcomposer

Paper: https://arxiv.org/abs/2305.10431v1

📌 Dataset: https://paperswithcode.com/dataset/ffhq

⭐️ Project: https://fastcomposer.mit.edu/

ai_machinelearning_big_data

Читать полностью…

Machinelearning

ULIP: Learning a Unified Representation of Language, Images, and Point Clouds for 3D Understanding

You can easily plug in any 3D backbone models and pre-train it using our framework to get a jump-start for various downstreaming tasks!

ULIP - мультимодальная предварительно обученная модель, которая может использовать данные из разных модальностей (изображения, текст и тд) для работы с 3D-данными.

🖥 Github: https://github.com/salesforce/ulip

Paper: https://arxiv.org/abs/2305.08275v1

📌 Dataset: https://paperswithcode.com/dataset/objaverse

ai_machinelearning_big_data

Читать полностью…

Machinelearning

Если хотите получить качественное образование в области компьютерных наук и учиться в университете, который входит в ТОП-100 лучших молодых вузов мира по версии Nature Index, этот пост для вас!

Сейчас в Сколтехе открыт отбор на две сильные магистратуры:

Современные вычислительные методы — программа сочетает в себе обучение современным методам математического моделирования, включая методы искусственного интеллекта, и их применение на практике с учётом передовых возможностей высокопроизводительных и параллельных вычислений.

Науки о данных — программа готовит экспертов в сфере машинного и глубокого обучения, компьютерного зрения, обработки естественного языка и других направлений современной науки о данных.

Немного об учёбе в Сколтехе:

- собственный исследовательский проект на базе уникальных лабораторий;

- профессора с мировым именем;

- стипендия и ДМС.

Узнайте подробнее о программах Сколтеха и подайте заявку здесь.

Реклама. Автономная некоммерческая образовательная организация высшего образования «Сколковский институт науки и технологий», ИНН 5032998454

Читать полностью…

Machinelearning

⚡️Стартовал прием заявок на Технологический конкурс НТИ Up Great «Экстренный поиск»!

Участникам предстоит преодолеть комплексный технологический барьер, предусматривающий разработку технологий и технических решений, объединенных в единую систему, позволяющую эффективно использовать техническое зрение при поиске пропавших людей с применением беспилотных воздушных судов (БВС).

На первом этапе (Сателлит №1) участникам необходимо разработать программное решение для поиска объектов (людей) на изображениях, полученных с БВС.

Призовой фонд Сателлита №1 составляет 5 млн руб.

Лучшим командам, удовлетворяющим требованиям технического регламента, организаторами будут предоставлены БВС для участия во втором этапе (Сателлит №2) и финале конкурса.

Призерами и победителями могут стать только налоговые резиденты РФ.

📲Заявки на Сателлит № 1 принимаются до 12 июня 2023 г. по ссылке.

Конкурс организуется совместно МФТИ, Фондом НТИ и добровольческим поисково-спасательным отрядом «ЛизаАлерт». Общий призовой фонд составляет 135 млн руб.

Читать полностью…

Machinelearning

VideoChat: Chat-Centric Video Understanding

Currently, Ask-Anything is a simple yet interesting tool for chatting with video.

Набор данных, ориентированный на видео, состоящий из тысяч видеороликов, сопровождаемых подробными описаниями и субтитрами.


🖥 Github: https://github.com/OpenGVLab/Ask-Anything

⭐️ Demo: https://huggingface.co/spaces/ynhe/AskAnything

Paper: https://arxiv.org/pdf/2305.06355v1.pdf

📌 Dataset: https://paperswithcode.com/dataset/webvid

ai_machinelearning_big_data

Читать полностью…

Machinelearning

🔥 ImageBind: One Embedding Space To Bind Them All

ImageBind, an approach to learn a joint embedding across six different modalities - images, text, audio, depth, thermal, and IMU data.

ImageBind, новый подход от Meta к обучению совместному встраиванию шести различных модальностей - текста,изображений, аудио, глубины, тепловых данных и данных IMU.

🖥 Github: https://github.com/facebookresearch/imagebind

Ⓜ️ Meta blog: https://ai.facebook.com/blog/imagebind-six-modalities-binding-ai/

Paper: https://arxiv.org/pdf/2305.05665v1.pdf

⭐️ Demo: https://imagebind.metademolab.com/

📌 Dataset: https://paperswithcode.com/dataset/msr-vtt

ai_machinelearning_big_data

Читать полностью…

Machinelearning

🔈Text-to-Video: The Task, Challenges and the Current State

In this post, we covered the constraints, unique challenges and the current state of text-to-video generation models


Текст в видео: Задачи, проблемы и текущее состояние. В этом посте мы обсудим прошлое, настоящее и будущее моделей "текст в видео".

🤗 Hugging face: https://huggingface.co/blog/text-to-video

🖥 Github: https://github.com/huggingface/blog/blob/main/text-to-video.md

Damo-vilab: https://huggingface.co/damo-vilab

📌 Dataset: https://m-bain.github.io/webvid-dataset/

ai_machinelearning_big_data

Читать полностью…

Machinelearning

🔄 Caption Anything: Interactive Image Description with Diverse Multimodal Controls


Caption-Anything is a versatile tool combining image segmentation, visual captioning, and ChatGPT, generating tailored captions with diverse controls for user preferences.


Универсальный инструмент для работы с изображениями, сочетающий в себе возможности, Visual Captioning, SAM, ChatGPT. Модель генерирует описательные подписи для любого объекта на изображении.

🖥 Github: https://github.com/ttengwang/caption-anything

Paper: https://arxiv.org/abs/2305.02677v1

📌 Dataset: https://paperswithcode.com/dataset/cityscapes-3d

🖥 Colab: https://colab.research.google.com/github/ttengwang/Caption-Anything/blob/main/notebooks/tutorial.ipynb

ai_machinelearning_big_data

Читать полностью…

Machinelearning

Имеете опыт в машинном обучении, но хотите двигаться ещё дальше?

Специально для вас Валерий Бабушкин, Vice President, Data Science в Blockchainꓸcom, вместе с командой опытных специалистов из Яндекса, AliExpress и X5 Retail Group подготовил продвинутый курс, на котором вам предстоит решать сложные и нестандартные задачи бизнеса.

Ранжирование и матчинг, динамическое ценообразование, uplift-моделирование, ускорение и повышение чувствительности A/B-тестов — выбирайте нужные блоки или проходите курс целиком.

Если вы уже сталкивались с чем-то из этого в своей работе, то познакомитесь с best practices индустрии. А если нет — дополните своё резюме новыми кейсами и станете более разносторонним ML-специалистом.

Ждём вас на курсе! Следующий поток стартует уже 10 мая, а по промокоду HARDMLAI26 будет скидка 5%
Записывайтесь по ссылке

Читать полностью…

Machinelearning

Running IF with 🧨 diffusers on a Free Tier Google Colab

IF is better at generating images with high-frequency details (e.g., human faces and hands) and is the first open-source image generation model that can reliably generate images with text.

Инструкция, как запустить одну из самых мощных моделей преобразования текста в изображение с открытым исходным кодом IF на бесплатном Google Colab.

🤗 Hugging face: https://huggingface.co/blog/if

🖥 Github: https://github.com/deep-floyd/IF

Paper: https://arxiv.org/pdf/2205.11487.pdf

📌 Demo:https://huggingface.co/spaces/DeepFloyd/IF

ai_machinelearning_big_data

Читать полностью…

Machinelearning

🔍 Unleashing Infinite-Length Input Capacity for Large-scale Language Models with Self-Controlled Memory System

Self-Controlled Memory (SCM) system to unleash infinite-length input capacity for large-scale language models.

SCM может быть интегрирована с любыми LLM для обработки сверхдлинных текстов без каких-либо изменений или тонкой настройки.


🖥 Github: https://github.com/toufunao/SCM4LLMs

Paper: https://arxiv.org/abs/2304.13343v1

📌 Tasks: https://paperswithcode.com/task/language-modelling

ai_machinelearning_big_data

Читать полностью…
Подписаться на канал